A Remote Sensing Spectral Index Guided Bitemporal Residual Attention Network for Wildfire Burn Severity Mapping Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/jstars.2024.3460531
Wildfires cause substantial damage and present considerable risks to both natural ecosystem and human societies. A precise and prompt evaluation of wildfire-induced damage is crucial for effective postfire management and restoration. Considerable advancements have been made in monitoring and mapping fire-affected areas through feature engineering and machine learning techniques. However, existing methods often exhibit several limitations, such as complicated and time-intensive procedures on manual labeling, and a primary focus on binary classification, which only distinguishes between burned and nonburned areas. In response, this study develops a wildfire burn severity assessment model, BiRAUnet-NBR, which can not only accurately identify fire-affected areas, but also assess the burn severity levels (low, moderate, and high) within those areas. Built upon the standard U-Net architecture, the proposed BiRAUnet-NBR first incorporates bitemporal Sentinel 2 Level-2A remote sensing imagery, captured before and after a wildfire, which enables the model to better distinguish burned areas from the background and identify the severity level of the resulting burns. In addition, it further enhances the standard U-Net architecture by fusing additional spectral layers, such as the normalized burn ratio (NBR) derived from post- and prefire images, therefore, informing the detection of burn areas. Moreover, BiRAUnet-NBR also integrates attention mechanism, enabling the model to pay more attention to meaningful features and burn areas, and residual blocks in the decoder module, which not only significantly improves segmentation results but also enhances training stability and prevents the issue of vanishing gradients. The experimental results demonstrate the superiority of the proposed model in both multiclass and binary mapping of wildfire burn areas, achieving an overall accuracy over 95%. Furthermore, it outperforms baseline algorithms, including support vector machine, random forest, eXtreme gradient boosting, and fully convolutional network, with an average improvement of 18% in F1-score and 15% in mean intersection over union.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jstars.2024.3460531
- OA Status
- gold
- Cited By
- 4
- References
- 93
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402509506
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402509506Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jstars.2024.3460531Digital Object Identifier
- Title
-
A Remote Sensing Spectral Index Guided Bitemporal Residual Attention Network for Wildfire Burn Severity MappingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Mingda Wu, Qunying Huang, Tang Sui, Bo Peng, Manzhu YuList of authors in order
- Landing page
-
https://doi.org/10.1109/jstars.2024.3460531Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jstars.2024.3460531Direct OA link when available
- Concepts
-
Remote sensing, Residual, Environmental science, Index (typography), Computer science, Meteorology, Geology, Geography, Algorithm, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
93Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402509506 |
|---|---|
| doi | https://doi.org/10.1109/jstars.2024.3460531 |
| ids.doi | https://doi.org/10.1109/jstars.2024.3460531 |
| ids.openalex | https://openalex.org/W4402509506 |
| fwci | 2.29513644 |
| type | article |
| title | A Remote Sensing Spectral Index Guided Bitemporal Residual Attention Network for Wildfire Burn Severity Mapping |
| biblio.issue | |
| biblio.volume | 17 |
| biblio.last_page | 17206 |
| biblio.first_page | 17187 |
| topics[0].id | https://openalex.org/T10555 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Fire effects on ecosystems |
| topics[1].id | https://openalex.org/T12597 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Fire Detection and Safety Systems |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9520000219345093 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list.value | 1250 |
| apc_list.currency | USD |
| apc_list.value_usd | 1250 |
| apc_paid.value | 1250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1250 |
| concepts[0].id | https://openalex.org/C62649853 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7045320868492126 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[0].display_name | Remote sensing |
| concepts[1].id | https://openalex.org/C155512373 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6938932538032532 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[1].display_name | Residual |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5592387914657593 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C2777382242 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5441119074821472 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6017816 |
| concepts[3].display_name | Index (typography) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3600316643714905 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C153294291 |
| concepts[5].level | 1 |
| concepts[5].score | 0.34747830033302307 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[5].display_name | Meteorology |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1221923828125 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.09424099326133728 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08647510409355164 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C136764020 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[9].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/remote-sensing |
| keywords[0].score | 0.7045320868492126 |
| keywords[0].display_name | Remote sensing |
| keywords[1].id | https://openalex.org/keywords/residual |
| keywords[1].score | 0.6938932538032532 |
| keywords[1].display_name | Residual |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.5592387914657593 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/index |
| keywords[3].score | 0.5441119074821472 |
| keywords[3].display_name | Index (typography) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3600316643714905 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/meteorology |
| keywords[5].score | 0.34747830033302307 |
| keywords[5].display_name | Meteorology |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.1221923828125 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.09424099326133728 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.08647510409355164 |
| keywords[8].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1109/jstars.2024.3460531 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S117727964 |
| locations[0].source.issn | 1939-1404, 2151-1535 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1939-1404 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1109/jstars.2024.3460531 |
| locations[1].id | pmh:oai:doaj.org/article:39f8319e483c4672a026b09f36e0952e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 17187-17206 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/39f8319e483c4672a026b09f36e0952e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5012367786 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-1043-8256 |
| authorships[0].author.display_name | Mingda Wu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[0].affiliations[0].raw_affiliation_string | Spatial Computing and Data Mining Lab, University of Wisconsin-Madison, USA |
| authorships[0].institutions[0].id | https://openalex.org/I135310074 |
| authorships[0].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mingda Wu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Spatial Computing and Data Mining Lab, University of Wisconsin-Madison, USA |
| authorships[1].author.id | https://openalex.org/A5016893039 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3499-7294 |
| authorships[1].author.display_name | Qunying Huang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[1].affiliations[0].raw_affiliation_string | Spatial Computing and Data Mining Lab, University of Wisconsin-Madison, USA |
| authorships[1].institutions[0].id | https://openalex.org/I135310074 |
| authorships[1].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qunying Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Spatial Computing and Data Mining Lab, University of Wisconsin-Madison, USA |
| authorships[2].author.id | https://openalex.org/A5004426785 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-6685-2660 |
| authorships[2].author.display_name | Tang Sui |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[2].affiliations[0].raw_affiliation_string | Spatial Computing and Data Mining Lab, University of Wisconsin-Madison, USA |
| authorships[2].institutions[0].id | https://openalex.org/I135310074 |
| authorships[2].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tang Sui |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Spatial Computing and Data Mining Lab, University of Wisconsin-Madison, USA |
| authorships[3].author.id | https://openalex.org/A5101685717 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1514-6881 |
| authorships[3].author.display_name | Bo Peng |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[3].affiliations[0].raw_affiliation_string | Spatial Computing and Data Mining Lab, University of Wisconsin-Madison, USA |
| authorships[3].institutions[0].id | https://openalex.org/I135310074 |
| authorships[3].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bo Peng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Spatial Computing and Data Mining Lab, University of Wisconsin-Madison, USA |
| authorships[4].author.id | https://openalex.org/A5073577524 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6769-7517 |
| authorships[4].author.display_name | Manzhu Yu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I130769515 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Geography, Pennsylvania State University, USA |
| authorships[4].institutions[0].id | https://openalex.org/I130769515 |
| authorships[4].institutions[0].ror | https://ror.org/04p491231 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I130769515 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Pennsylvania State University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Manzhu Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Geography, Pennsylvania State University, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jstars.2024.3460531 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Remote Sensing Spectral Index Guided Bitemporal Residual Attention Network for Wildfire Burn Severity Mapping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10555 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Fire effects on ecosystems |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2560215812, https://openalex.org/W2949601986, https://openalex.org/W2788972299, https://openalex.org/W2498789492, https://openalex.org/W2521347458, https://openalex.org/W2729981612, https://openalex.org/W4233449973, https://openalex.org/W2925692864, https://openalex.org/W2768526084 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jstars.2024.3460531 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S117727964 |
| best_oa_location.source.issn | 1939-1404, 2151-1535 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1939-1404 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jstars.2024.3460531 |
| primary_location.id | doi:10.1109/jstars.2024.3460531 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S117727964 |
| primary_location.source.issn | 1939-1404, 2151-1535 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1939-1404 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1109/jstars.2024.3460531 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3155303419, https://openalex.org/W1523918168, https://openalex.org/W2014610539, https://openalex.org/W2111222097, https://openalex.org/W1413645801, https://openalex.org/W2739016481, https://openalex.org/W3119886183, https://openalex.org/W4400762160, https://openalex.org/W2295598076, https://openalex.org/W2156909104, https://openalex.org/W3113662382, https://openalex.org/W4312445343, https://openalex.org/W4401146729, https://openalex.org/W2587866267, https://openalex.org/W4323317330, https://openalex.org/W4292543099, https://openalex.org/W3217596343, https://openalex.org/W4304127774, https://openalex.org/W4386065238, https://openalex.org/W2964069799, https://openalex.org/W3022794580, https://openalex.org/W2948361905, https://openalex.org/W2118247391, https://openalex.org/W2034772139, https://openalex.org/W2086014296, https://openalex.org/W2578950705, https://openalex.org/W2028991610, https://openalex.org/W2461587268, https://openalex.org/W2142401697, https://openalex.org/W2085918337, https://openalex.org/W2038057313, https://openalex.org/W2091689518, https://openalex.org/W3164972959, https://openalex.org/W3095290715, https://openalex.org/W4320492316, https://openalex.org/W2884851559, https://openalex.org/W3005928150, https://openalex.org/W4297957988, https://openalex.org/W6941482307, https://openalex.org/W4283800300, https://openalex.org/W3015900272, https://openalex.org/W3046220160, https://openalex.org/W4382624116, https://openalex.org/W2919115771, https://openalex.org/W3157909651, https://openalex.org/W2395611524, https://openalex.org/W4311711276, https://openalex.org/W2412782625, https://openalex.org/W3090022951, https://openalex.org/W4224309515, https://openalex.org/W4312093047, https://openalex.org/W2609077090, https://openalex.org/W3176110204, https://openalex.org/W4315631463, https://openalex.org/W3037074658, https://openalex.org/W4224057512, https://openalex.org/W4213415808, https://openalex.org/W4233614942, https://openalex.org/W4308045215, https://openalex.org/W2973710071, https://openalex.org/W4214895504, https://openalex.org/W2606728238, https://openalex.org/W4295036423, https://openalex.org/W3163612517, https://openalex.org/W6788128679, https://openalex.org/W4382136985, https://openalex.org/W1901129140, https://openalex.org/W2112796928, https://openalex.org/W4288081131, https://openalex.org/W1521897025, https://openalex.org/W3139355675, https://openalex.org/W2901355636, https://openalex.org/W2110306174, https://openalex.org/W6750469568, https://openalex.org/W4281490773, https://openalex.org/W3147852756, https://openalex.org/W2963495494, https://openalex.org/W2194775991, https://openalex.org/W2923997689, https://openalex.org/W1903029394, https://openalex.org/W6631190155, https://openalex.org/W6767164110, https://openalex.org/W3216067289, https://openalex.org/W3027938990, https://openalex.org/W4295441475, https://openalex.org/W2108064960, https://openalex.org/W6751420435, https://openalex.org/W6779586474, https://openalex.org/W2560311620, https://openalex.org/W2963114469, https://openalex.org/W2746791238, https://openalex.org/W2903042037, https://openalex.org/W4315631541 |
| referenced_works_count | 93 |
| abstract_inverted_index.2 | 127 |
| abstract_inverted_index.A | 15 |
| abstract_inverted_index.a | 66, 85, 136 |
| abstract_inverted_index.In | 80, 159 |
| abstract_inverted_index.an | 259, 283 |
| abstract_inverted_index.as | 57, 174 |
| abstract_inverted_index.by | 168 |
| abstract_inverted_index.in | 36, 215, 248, 288, 292 |
| abstract_inverted_index.is | 23 |
| abstract_inverted_index.it | 161, 265 |
| abstract_inverted_index.of | 20, 155, 190, 235, 244, 254, 286 |
| abstract_inverted_index.on | 62, 69 |
| abstract_inverted_index.to | 8, 142, 202, 206 |
| abstract_inverted_index.The | 238 |
| abstract_inverted_index.and | 4, 12, 17, 29, 38, 45, 59, 65, 77, 109, 134, 150, 183, 209, 212, 231, 251, 278, 290 |
| abstract_inverted_index.but | 100, 226 |
| abstract_inverted_index.can | 93 |
| abstract_inverted_index.for | 25 |
| abstract_inverted_index.not | 94, 220 |
| abstract_inverted_index.pay | 203 |
| abstract_inverted_index.the | 103, 116, 120, 140, 148, 152, 156, 164, 175, 188, 200, 216, 233, 242, 245 |
| abstract_inverted_index.also | 101, 195, 227 |
| abstract_inverted_index.been | 34 |
| abstract_inverted_index.both | 9, 249 |
| abstract_inverted_index.burn | 87, 104, 177, 191, 210, 256 |
| abstract_inverted_index.from | 147, 181 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.made | 35 |
| abstract_inverted_index.mean | 293 |
| abstract_inverted_index.more | 204 |
| abstract_inverted_index.only | 73, 95, 221 |
| abstract_inverted_index.over | 262, 295 |
| abstract_inverted_index.such | 56, 173 |
| abstract_inverted_index.this | 82 |
| abstract_inverted_index.upon | 115 |
| abstract_inverted_index.with | 282 |
| abstract_inverted_index.(NBR) | 179 |
| abstract_inverted_index.(low, | 107 |
| abstract_inverted_index.Built | 114 |
| abstract_inverted_index.U-Net | 118, 166 |
| abstract_inverted_index.after | 135 |
| abstract_inverted_index.areas | 41, 146 |
| abstract_inverted_index.cause | 1 |
| abstract_inverted_index.first | 123 |
| abstract_inverted_index.focus | 68 |
| abstract_inverted_index.fully | 279 |
| abstract_inverted_index.high) | 110 |
| abstract_inverted_index.human | 13 |
| abstract_inverted_index.issue | 234 |
| abstract_inverted_index.level | 154 |
| abstract_inverted_index.model | 141, 201, 247 |
| abstract_inverted_index.often | 52 |
| abstract_inverted_index.post- | 182 |
| abstract_inverted_index.ratio | 178 |
| abstract_inverted_index.risks | 7 |
| abstract_inverted_index.study | 83 |
| abstract_inverted_index.those | 112 |
| abstract_inverted_index.which | 72, 92, 138, 219 |
| abstract_inverted_index.areas, | 99, 211, 257 |
| abstract_inverted_index.areas. | 79, 113, 192 |
| abstract_inverted_index.assess | 102 |
| abstract_inverted_index.before | 133 |
| abstract_inverted_index.better | 143 |
| abstract_inverted_index.binary | 70, 252 |
| abstract_inverted_index.blocks | 214 |
| abstract_inverted_index.burned | 76, 145 |
| abstract_inverted_index.burns. | 158 |
| abstract_inverted_index.damage | 3, 22 |
| abstract_inverted_index.fusing | 169 |
| abstract_inverted_index.levels | 106 |
| abstract_inverted_index.manual | 63 |
| abstract_inverted_index.model, | 90 |
| abstract_inverted_index.prompt | 18 |
| abstract_inverted_index.random | 273 |
| abstract_inverted_index.remote | 129 |
| abstract_inverted_index.union. | 296 |
| abstract_inverted_index.vector | 271 |
| abstract_inverted_index.within | 111 |
| abstract_inverted_index.average | 284 |
| abstract_inverted_index.between | 75 |
| abstract_inverted_index.crucial | 24 |
| abstract_inverted_index.decoder | 217 |
| abstract_inverted_index.derived | 180 |
| abstract_inverted_index.eXtreme | 275 |
| abstract_inverted_index.enables | 139 |
| abstract_inverted_index.exhibit | 53 |
| abstract_inverted_index.feature | 43 |
| abstract_inverted_index.forest, | 274 |
| abstract_inverted_index.further | 162 |
| abstract_inverted_index.images, | 185 |
| abstract_inverted_index.layers, | 172 |
| abstract_inverted_index.machine | 46 |
| abstract_inverted_index.mapping | 39, 253 |
| abstract_inverted_index.methods | 51 |
| abstract_inverted_index.module, | 218 |
| abstract_inverted_index.natural | 10 |
| abstract_inverted_index.overall | 260 |
| abstract_inverted_index.precise | 16 |
| abstract_inverted_index.prefire | 184 |
| abstract_inverted_index.present | 5 |
| abstract_inverted_index.primary | 67 |
| abstract_inverted_index.results | 225, 240 |
| abstract_inverted_index.sensing | 130 |
| abstract_inverted_index.several | 54 |
| abstract_inverted_index.support | 270 |
| abstract_inverted_index.through | 42 |
| abstract_inverted_index.F1-score | 289 |
| abstract_inverted_index.However, | 49 |
| abstract_inverted_index.Level-2A | 128 |
| abstract_inverted_index.Sentinel | 126 |
| abstract_inverted_index.accuracy | 261 |
| abstract_inverted_index.baseline | 267 |
| abstract_inverted_index.captured | 132 |
| abstract_inverted_index.develops | 84 |
| abstract_inverted_index.enabling | 199 |
| abstract_inverted_index.enhances | 163, 228 |
| abstract_inverted_index.existing | 50 |
| abstract_inverted_index.features | 208 |
| abstract_inverted_index.gradient | 276 |
| abstract_inverted_index.identify | 97, 151 |
| abstract_inverted_index.imagery, | 131 |
| abstract_inverted_index.improves | 223 |
| abstract_inverted_index.learning | 47 |
| abstract_inverted_index.machine, | 272 |
| abstract_inverted_index.network, | 281 |
| abstract_inverted_index.postfire | 27 |
| abstract_inverted_index.prevents | 232 |
| abstract_inverted_index.proposed | 121, 246 |
| abstract_inverted_index.residual | 213 |
| abstract_inverted_index.severity | 88, 105, 153 |
| abstract_inverted_index.spectral | 171 |
| abstract_inverted_index.standard | 117, 165 |
| abstract_inverted_index.training | 229 |
| abstract_inverted_index.wildfire | 86, 255 |
| abstract_inverted_index.Moreover, | 193 |
| abstract_inverted_index.Wildfires | 0 |
| abstract_inverted_index.achieving | 258 |
| abstract_inverted_index.addition, | 160 |
| abstract_inverted_index.attention | 197, 205 |
| abstract_inverted_index.boosting, | 277 |
| abstract_inverted_index.detection | 189 |
| abstract_inverted_index.ecosystem | 11 |
| abstract_inverted_index.effective | 26 |
| abstract_inverted_index.including | 269 |
| abstract_inverted_index.informing | 187 |
| abstract_inverted_index.labeling, | 64 |
| abstract_inverted_index.moderate, | 108 |
| abstract_inverted_index.nonburned | 78 |
| abstract_inverted_index.response, | 81 |
| abstract_inverted_index.resulting | 157 |
| abstract_inverted_index.stability | 230 |
| abstract_inverted_index.vanishing | 236 |
| abstract_inverted_index.wildfire, | 137 |
| abstract_inverted_index.15% | 291 |
| abstract_inverted_index.18% | 287 |
| abstract_inverted_index.accurately | 96 |
| abstract_inverted_index.additional | 170 |
| abstract_inverted_index.assessment | 89 |
| abstract_inverted_index.background | 149 |
| abstract_inverted_index.bitemporal | 125 |
| abstract_inverted_index.evaluation | 19 |
| abstract_inverted_index.gradients. | 237 |
| abstract_inverted_index.integrates | 196 |
| abstract_inverted_index.management | 28 |
| abstract_inverted_index.meaningful | 207 |
| abstract_inverted_index.mechanism, | 198 |
| abstract_inverted_index.monitoring | 37 |
| abstract_inverted_index.multiclass | 250 |
| abstract_inverted_index.normalized | 176 |
| abstract_inverted_index.procedures | 61 |
| abstract_inverted_index.societies. | 14 |
| abstract_inverted_index.therefore, | 186 |
| abstract_inverted_index.95%. | 263 |
| abstract_inverted_index.algorithms, | 268 |
| abstract_inverted_index.complicated | 58 |
| abstract_inverted_index.demonstrate | 241 |
| abstract_inverted_index.distinguish | 144 |
| abstract_inverted_index.engineering | 44 |
| abstract_inverted_index.improvement | 285 |
| abstract_inverted_index.outperforms | 266 |
| abstract_inverted_index.substantial | 2 |
| abstract_inverted_index.superiority | 243 |
| abstract_inverted_index.techniques. | 48 |
| abstract_inverted_index.BiRAUnet-NBR | 122, 194 |
| abstract_inverted_index.Considerable | 31 |
| abstract_inverted_index.Furthermore, | 264 |
| abstract_inverted_index.advancements | 32 |
| abstract_inverted_index.architecture | 167 |
| abstract_inverted_index.considerable | 6 |
| abstract_inverted_index.experimental | 239 |
| abstract_inverted_index.incorporates | 124 |
| abstract_inverted_index.intersection | 294 |
| abstract_inverted_index.limitations, | 55 |
| abstract_inverted_index.restoration. | 30 |
| abstract_inverted_index.segmentation | 224 |
| abstract_inverted_index.BiRAUnet-NBR, | 91 |
| abstract_inverted_index.architecture, | 119 |
| abstract_inverted_index.convolutional | 280 |
| abstract_inverted_index.distinguishes | 74 |
| abstract_inverted_index.fire-affected | 40, 98 |
| abstract_inverted_index.significantly | 222 |
| abstract_inverted_index.time-intensive | 60 |
| abstract_inverted_index.classification, | 71 |
| abstract_inverted_index.wildfire-induced | 21 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.82290544 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |