A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/app11125320
Anomaly detection has gained considerable attention in the past couple of years. Emerging technologies, such as the Internet of Things (IoT), are known to be among the most critical sources of data streams that produce massive amounts of data continuously from numerous applications. Examining these collected data to detect suspicious events can reduce functional threats and avoid unseen issues that cause downtime in the applications. Due to the dynamic nature of the data stream characteristics, many unresolved problems persist. In the existing literature, methods have been designed and developed to evaluate certain anomalous behaviors in IoT data stream sources. However, there is a lack of comprehensive studies that discuss all the aspects of IoT data processing. Thus, this paper attempts to fill this gap by providing a complete image of various state-of-the-art techniques on the major problems and core challenges in IoT data. The nature of data, anomaly types, learning mode, window model, datasets, and evaluation criteria are also presented. Research challenges related to data evolving, feature-evolving, windowing, ensemble approaches, nature of input data, data complexity and noise, parameters selection, data visualizations, heterogeneity of data, accuracy, and large-scale and high-dimensional data are investigated. Finally, the challenges that require substantial research efforts and future directions are summarized.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.3390/app11125320
- https://www.mdpi.com/2076-3417/11/12/5320/pdf?version=1623138299
- OA Status
- gold
- Cited By
- 161
- References
- 80
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3168992578
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3168992578Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app11125320Digital Object Identifier
- Title
-
A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT DataWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-08Full publication date if available
- Authors
-
Redhwan Al-amri, Raja Kumar Murugesan, Mustafa Man, Alaa Fareed, Mohammed A. Al‐Sharafi, Ammar Ahmed AlkahtaniList of authors in order
- Landing page
-
https://doi.org/10.3390/app11125320Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/11/12/5320/pdf?version=1623138299Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/11/12/5320/pdf?version=1623138299Direct OA link when available
- Concepts
-
Computer science, Anomaly detection, Data stream mining, Data stream, Data science, Data mining, Downtime, Machine learning, Artificial intelligence, Operating system, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
161Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 40, 2024: 58, 2023: 34, 2022: 22, 2021: 7Per-year citation counts (last 5 years)
- References (count)
-
80Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3168992578 |
|---|---|
| doi | https://doi.org/10.3390/app11125320 |
| ids.doi | https://doi.org/10.3390/app11125320 |
| ids.mag | 3168992578 |
| ids.openalex | https://openalex.org/W3168992578 |
| fwci | 17.07353259 |
| type | review |
| title | A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data |
| awards[0].id | https://openalex.org/G5309379061 |
| awards[0].funder_id | https://openalex.org/F4320327340 |
| awards[0].display_name | |
| awards[0].funder_award_id | FRGS/1/2018/ICT04/UMT/02/. |
| awards[0].funder_display_name | Universiti Malaysia Terengganu |
| biblio.issue | 12 |
| biblio.volume | 11 |
| biblio.last_page | 5320 |
| biblio.first_page | 5320 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T10400 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9857000112533569 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Network Security and Intrusion Detection |
| funders[0].id | https://openalex.org/F4320327340 |
| funders[0].ror | https://ror.org/02474f074 |
| funders[0].display_name | Universiti Malaysia Terengganu |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7785605192184448 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C739882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6914108991622925 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[1].display_name | Anomaly detection |
| concepts[2].id | https://openalex.org/C89198739 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6563320159912109 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3079880 |
| concepts[2].display_name | Data stream mining |
| concepts[3].id | https://openalex.org/C2778484313 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5200364589691162 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1172540 |
| concepts[3].display_name | Data stream |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4730885624885559 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4565633237361908 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C180591934 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42509567737579346 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1253369 |
| concepts[6].display_name | Downtime |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35062241554260254 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3503831923007965 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7785605192184448 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/anomaly-detection |
| keywords[1].score | 0.6914108991622925 |
| keywords[1].display_name | Anomaly detection |
| keywords[2].id | https://openalex.org/keywords/data-stream-mining |
| keywords[2].score | 0.6563320159912109 |
| keywords[2].display_name | Data stream mining |
| keywords[3].id | https://openalex.org/keywords/data-stream |
| keywords[3].score | 0.5200364589691162 |
| keywords[3].display_name | Data stream |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.4730885624885559 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.4565633237361908 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/downtime |
| keywords[6].score | 0.42509567737579346 |
| keywords[6].display_name | Downtime |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.35062241554260254 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3503831923007965 |
| keywords[8].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3390/app11125320 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/11/12/5320/pdf?version=1623138299 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app11125320 |
| locations[1].id | pmh:oai:doaj.org/article:f8c7443e8ff94987be2bde3be68621c9 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 11, Iss 12, p 5320 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/f8c7443e8ff94987be2bde3be68621c9 |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/11/12/5320/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Pages: 5320 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app11125320 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5004253407 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1173-3480 |
| authorships[0].author.display_name | Redhwan Al-amri |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210143550 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Taylor's University, Subang Jaya 47500, Selangor, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I4210143550 |
| authorships[0].institutions[0].ror | https://ror.org/0498pcx51 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210143550 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | Taylor's University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Redhwan Al-amri |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, Taylor's University, Subang Jaya 47500, Selangor, Malaysia |
| authorships[1].author.id | https://openalex.org/A5062919173 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9500-1361 |
| authorships[1].author.display_name | Raja Kumar Murugesan |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210143550 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Taylor's University, Subang Jaya 47500, Selangor, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I4210143550 |
| authorships[1].institutions[0].ror | https://ror.org/0498pcx51 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210143550 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | Taylor's University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Raja Kumar Murugesan |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, Taylor's University, Subang Jaya 47500, Selangor, Malaysia |
| authorships[2].author.id | https://openalex.org/A5014520800 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4071-721X |
| authorships[2].author.display_name | Mustafa Man |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157696592 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Ocean Engineering Technology & Informatics, Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I157696592 |
| authorships[2].institutions[0].ror | https://ror.org/02474f074 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I157696592 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Universiti Malaysia Terengganu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mustafa Man |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Faculty of Ocean Engineering Technology & Informatics, Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia |
| authorships[3].author.id | https://openalex.org/A5027008194 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5978-6077 |
| authorships[3].author.display_name | Alaa Fareed |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I94625822 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computing, Universiti Utara Malaysia, Sintok 06010, Kedah, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I94625822 |
| authorships[3].institutions[0].ror | https://ror.org/01ss10648 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I94625822 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | Northern University of Malaysia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alaa Fareed Abdulateef |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computing, Universiti Utara Malaysia, Sintok 06010, Kedah, Malaysia |
| authorships[4].author.id | https://openalex.org/A5048153887 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0726-6031 |
| authorships[4].author.display_name | Mohammed A. Al‐Sharafi |
| authorships[4].countries | MY |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Information Systems, Azman Hashim International Business School, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia |
| authorships[4].institutions[0].id | https://openalex.org/I4576418 |
| authorships[4].institutions[0].ror | https://ror.org/026w31v75 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4576418 |
| authorships[4].institutions[0].country_code | MY |
| authorships[4].institutions[0].display_name | University of Technology Malaysia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mohammed A. Al-Sharafi |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Information Systems, Azman Hashim International Business School, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia |
| authorships[5].author.id | https://openalex.org/A5032366070 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2067-9519 |
| authorships[5].author.display_name | Ammar Ahmed Alkahtani |
| authorships[5].countries | MY |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I79156528, https://openalex.org/I874769580 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia |
| authorships[5].institutions[0].id | https://openalex.org/I874769580 |
| authorships[5].institutions[0].ror | https://ror.org/04jjxmt88 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I874769580 |
| authorships[5].institutions[0].country_code | MY |
| authorships[5].institutions[0].display_name | Tenaga Nasional Berhad (Malaysia) |
| authorships[5].institutions[1].id | https://openalex.org/I79156528 |
| authorships[5].institutions[1].ror | https://ror.org/03kxdn807 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I79156528, https://openalex.org/I874769580 |
| authorships[5].institutions[1].country_code | MY |
| authorships[5].institutions[1].display_name | Universiti Tenaga Nasional |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ammar Ahmed Alkahtani |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/11/12/5320/pdf?version=1623138299 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W3190734578, https://openalex.org/W1595351371, https://openalex.org/W4389449520, https://openalex.org/W127192698, https://openalex.org/W2570600173, https://openalex.org/W2893008024, https://openalex.org/W91065195, https://openalex.org/W2964556660, https://openalex.org/W2743735673, https://openalex.org/W3191523773 |
| cited_by_count | 161 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 40 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 58 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 34 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 22 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 7 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app11125320 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/11/12/5320/pdf?version=1623138299 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app11125320 |
| primary_location.id | doi:10.3390/app11125320 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/11/12/5320/pdf?version=1623138299 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app11125320 |
| publication_date | 2021-06-08 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2897317743, https://openalex.org/W2885073745, https://openalex.org/W2892384731, https://openalex.org/W6778579915, https://openalex.org/W2906498146, https://openalex.org/W6769616228, https://openalex.org/W2762644836, https://openalex.org/W2943379983, https://openalex.org/W2967045239, https://openalex.org/W2998462308, https://openalex.org/W2898352493, https://openalex.org/W2591507999, https://openalex.org/W3140570329, https://openalex.org/W3007670733, https://openalex.org/W2973055534, https://openalex.org/W2806029905, https://openalex.org/W2920456822, https://openalex.org/W2890707978, https://openalex.org/W2952589828, https://openalex.org/W3133532155, https://openalex.org/W2940195834, https://openalex.org/W2792005857, https://openalex.org/W2916641566, https://openalex.org/W2996880361, https://openalex.org/W3001398650, https://openalex.org/W2958658808, https://openalex.org/W2935274634, https://openalex.org/W2919650678, https://openalex.org/W2964036258, https://openalex.org/W2747307614, https://openalex.org/W2884123408, https://openalex.org/W2901588159, https://openalex.org/W2899895429, https://openalex.org/W2804129310, https://openalex.org/W2620661538, https://openalex.org/W2559950244, https://openalex.org/W1987799824, https://openalex.org/W2554061044, https://openalex.org/W3024302202, https://openalex.org/W2987702431, https://openalex.org/W2760845379, https://openalex.org/W3074321338, https://openalex.org/W2950686487, https://openalex.org/W2970724283, https://openalex.org/W2786827964, https://openalex.org/W2975052829, https://openalex.org/W3004207920, https://openalex.org/W2337344967, https://openalex.org/W2945594226, https://openalex.org/W2570160403, https://openalex.org/W2744316982, https://openalex.org/W2766807000, https://openalex.org/W2765884627, https://openalex.org/W1515008182, https://openalex.org/W2752291283, https://openalex.org/W2914755099, https://openalex.org/W2600859289, https://openalex.org/W2559446181, https://openalex.org/W2814079182, https://openalex.org/W2560792524, https://openalex.org/W2762208441, https://openalex.org/W2241984682, https://openalex.org/W3082355735, https://openalex.org/W2920086614, https://openalex.org/W2995140724, https://openalex.org/W2895641957, https://openalex.org/W2591796333, https://openalex.org/W2962146148, https://openalex.org/W2904539465, https://openalex.org/W2966559104, https://openalex.org/W2588408640, https://openalex.org/W2604813584, https://openalex.org/W2406523001, https://openalex.org/W2808266701, https://openalex.org/W2913497771, https://openalex.org/W3032628389, https://openalex.org/W2475668412, https://openalex.org/W2982330863, https://openalex.org/W3106543020, https://openalex.org/W3099185017 |
| referenced_works_count | 80 |
| abstract_inverted_index.a | 102, 126 |
| abstract_inverted_index.In | 79 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.be | 24 |
| abstract_inverted_index.by | 124 |
| abstract_inverted_index.in | 6, 62, 94, 140 |
| abstract_inverted_index.is | 101 |
| abstract_inverted_index.of | 10, 18, 30, 37, 70, 104, 112, 129, 145, 171, 183 |
| abstract_inverted_index.on | 133 |
| abstract_inverted_index.to | 23, 47, 66, 89, 120, 163 |
| abstract_inverted_index.Due | 65 |
| abstract_inverted_index.IoT | 95, 113, 141 |
| abstract_inverted_index.The | 143 |
| abstract_inverted_index.all | 109 |
| abstract_inverted_index.and | 55, 87, 137, 154, 176, 186, 188, 201 |
| abstract_inverted_index.are | 21, 157, 191, 204 |
| abstract_inverted_index.can | 51 |
| abstract_inverted_index.gap | 123 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.the | 7, 16, 26, 63, 67, 71, 80, 110, 134, 194 |
| abstract_inverted_index.also | 158 |
| abstract_inverted_index.been | 85 |
| abstract_inverted_index.core | 138 |
| abstract_inverted_index.data | 31, 38, 46, 72, 96, 114, 164, 174, 180, 190 |
| abstract_inverted_index.fill | 121 |
| abstract_inverted_index.from | 40 |
| abstract_inverted_index.have | 84 |
| abstract_inverted_index.lack | 103 |
| abstract_inverted_index.many | 75 |
| abstract_inverted_index.most | 27 |
| abstract_inverted_index.past | 8 |
| abstract_inverted_index.such | 14 |
| abstract_inverted_index.that | 33, 59, 107, 196 |
| abstract_inverted_index.this | 117, 122 |
| abstract_inverted_index.Thus, | 116 |
| abstract_inverted_index.among | 25 |
| abstract_inverted_index.avoid | 56 |
| abstract_inverted_index.cause | 60 |
| abstract_inverted_index.data, | 146, 173, 184 |
| abstract_inverted_index.data. | 142 |
| abstract_inverted_index.image | 128 |
| abstract_inverted_index.input | 172 |
| abstract_inverted_index.known | 22 |
| abstract_inverted_index.major | 135 |
| abstract_inverted_index.mode, | 150 |
| abstract_inverted_index.paper | 118 |
| abstract_inverted_index.there | 100 |
| abstract_inverted_index.these | 44 |
| abstract_inverted_index.(IoT), | 20 |
| abstract_inverted_index.Things | 19 |
| abstract_inverted_index.couple | 9 |
| abstract_inverted_index.detect | 48 |
| abstract_inverted_index.events | 50 |
| abstract_inverted_index.future | 202 |
| abstract_inverted_index.gained | 3 |
| abstract_inverted_index.issues | 58 |
| abstract_inverted_index.model, | 152 |
| abstract_inverted_index.nature | 69, 144, 170 |
| abstract_inverted_index.noise, | 177 |
| abstract_inverted_index.reduce | 52 |
| abstract_inverted_index.stream | 73, 97 |
| abstract_inverted_index.types, | 148 |
| abstract_inverted_index.unseen | 57 |
| abstract_inverted_index.window | 151 |
| abstract_inverted_index.years. | 11 |
| abstract_inverted_index.Anomaly | 0 |
| abstract_inverted_index.amounts | 36 |
| abstract_inverted_index.anomaly | 147 |
| abstract_inverted_index.aspects | 111 |
| abstract_inverted_index.certain | 91 |
| abstract_inverted_index.discuss | 108 |
| abstract_inverted_index.dynamic | 68 |
| abstract_inverted_index.efforts | 200 |
| abstract_inverted_index.massive | 35 |
| abstract_inverted_index.methods | 83 |
| abstract_inverted_index.produce | 34 |
| abstract_inverted_index.related | 162 |
| abstract_inverted_index.require | 197 |
| abstract_inverted_index.sources | 29 |
| abstract_inverted_index.streams | 32 |
| abstract_inverted_index.studies | 106 |
| abstract_inverted_index.threats | 54 |
| abstract_inverted_index.various | 130 |
| abstract_inverted_index.Emerging | 12 |
| abstract_inverted_index.Finally, | 193 |
| abstract_inverted_index.However, | 99 |
| abstract_inverted_index.Internet | 17 |
| abstract_inverted_index.Research | 160 |
| abstract_inverted_index.attempts | 119 |
| abstract_inverted_index.complete | 127 |
| abstract_inverted_index.criteria | 156 |
| abstract_inverted_index.critical | 28 |
| abstract_inverted_index.designed | 86 |
| abstract_inverted_index.downtime | 61 |
| abstract_inverted_index.ensemble | 168 |
| abstract_inverted_index.evaluate | 90 |
| abstract_inverted_index.existing | 81 |
| abstract_inverted_index.learning | 149 |
| abstract_inverted_index.numerous | 41 |
| abstract_inverted_index.persist. | 78 |
| abstract_inverted_index.problems | 77, 136 |
| abstract_inverted_index.research | 199 |
| abstract_inverted_index.sources. | 98 |
| abstract_inverted_index.Examining | 43 |
| abstract_inverted_index.accuracy, | 185 |
| abstract_inverted_index.anomalous | 92 |
| abstract_inverted_index.attention | 5 |
| abstract_inverted_index.behaviors | 93 |
| abstract_inverted_index.collected | 45 |
| abstract_inverted_index.datasets, | 153 |
| abstract_inverted_index.detection | 1 |
| abstract_inverted_index.developed | 88 |
| abstract_inverted_index.evolving, | 165 |
| abstract_inverted_index.providing | 125 |
| abstract_inverted_index.challenges | 139, 161, 195 |
| abstract_inverted_index.complexity | 175 |
| abstract_inverted_index.directions | 203 |
| abstract_inverted_index.evaluation | 155 |
| abstract_inverted_index.functional | 53 |
| abstract_inverted_index.parameters | 178 |
| abstract_inverted_index.presented. | 159 |
| abstract_inverted_index.selection, | 179 |
| abstract_inverted_index.suspicious | 49 |
| abstract_inverted_index.techniques | 132 |
| abstract_inverted_index.unresolved | 76 |
| abstract_inverted_index.windowing, | 167 |
| abstract_inverted_index.approaches, | 169 |
| abstract_inverted_index.large-scale | 187 |
| abstract_inverted_index.literature, | 82 |
| abstract_inverted_index.processing. | 115 |
| abstract_inverted_index.substantial | 198 |
| abstract_inverted_index.summarized. | 205 |
| abstract_inverted_index.considerable | 4 |
| abstract_inverted_index.continuously | 39 |
| abstract_inverted_index.applications. | 42, 64 |
| abstract_inverted_index.comprehensive | 105 |
| abstract_inverted_index.heterogeneity | 182 |
| abstract_inverted_index.investigated. | 192 |
| abstract_inverted_index.technologies, | 13 |
| abstract_inverted_index.visualizations, | 181 |
| abstract_inverted_index.characteristics, | 74 |
| abstract_inverted_index.high-dimensional | 189 |
| abstract_inverted_index.state-of-the-art | 131 |
| abstract_inverted_index.feature-evolving, | 166 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5048153887, https://openalex.org/A5004253407, https://openalex.org/A5014520800, https://openalex.org/A5062919173 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I157696592, https://openalex.org/I4210143550, https://openalex.org/I4576418 |
| citation_normalized_percentile.value | 0.99356909 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |