A Review of Macroscopic Carbon Emission Prediction Model Based on Machine Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/su15086876
Under the background of global warming and the energy crisis, the Chinese government has set the goal of carbon peaking and carbon neutralization. With the rapid development of machine learning, some advanced machine learning algorithms have also been applied to the control and prediction of carbon emissions due to their high efficiency and accuracy. In this paper, the current situation of machine learning applied to carbon emission prediction is studied in detail by means of paper retrieval. It was found that machine learning has become a hot topic in the field of carbon emission prediction models, and the main carbon emission prediction models are mainly based on back propagation neural networks, support vector machines, long short-term memory neural networks, random forests and extreme learning machines. By describing the characteristics of these five types of carbon emission prediction models and conducting a comparative analysis, we determined the applicable characteristics of each model, and based on this, future research ideas for carbon emission prediction models based on machine learning are proposed.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.3390/su15086876
- https://www.mdpi.com/2071-1050/15/8/6876/pdf?version=1681901800
- OA Status
- gold
- Cited By
- 51
- References
- 76
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366598224
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366598224Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/su15086876Digital Object Identifier
- Title
-
A Review of Macroscopic Carbon Emission Prediction Model Based on Machine LearningWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-19Full publication date if available
- Authors
-
Yuhong Zhao, Ruirui Liu, Zhansheng Liu, Liang Liu, Jingjing Wang, Wenxiang LiuList of authors in order
- Landing page
-
https://doi.org/10.3390/su15086876Publisher landing page
- PDF URL
-
https://www.mdpi.com/2071-1050/15/8/6876/pdf?version=1681901800Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2071-1050/15/8/6876/pdf?version=1681901800Direct OA link when available
- Concepts
-
Machine learning, Artificial intelligence, Artificial neural network, Extreme learning machine, Support vector machine, Computer science, Random forest, Carbon fibers, Algorithm, Composite numberTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
51Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 18, 2024: 23, 2023: 10Per-year citation counts (last 5 years)
- References (count)
-
76Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366598224 |
|---|---|
| doi | https://doi.org/10.3390/su15086876 |
| ids.doi | https://doi.org/10.3390/su15086876 |
| ids.openalex | https://openalex.org/W4366598224 |
| fwci | 8.35798336 |
| type | review |
| title | A Review of Macroscopic Carbon Emission Prediction Model Based on Machine Learning |
| biblio.issue | 8 |
| biblio.volume | 15 |
| biblio.last_page | 6876 |
| biblio.first_page | 6876 |
| topics[0].id | https://openalex.org/T12120 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9940999746322632 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Air Quality Monitoring and Forecasting |
| topics[1].id | https://openalex.org/T10438 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9819999933242798 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Energy, Environment, Economic Growth |
| topics[2].id | https://openalex.org/T10435 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9786999821662903 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Environmental Impact and Sustainability |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C119857082 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7010257244110107 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[0].display_name | Machine learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6749005913734436 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6341285705566406 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C2780150128 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6120243668556213 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21948731 |
| concepts[3].display_name | Extreme learning machine |
| concepts[4].id | https://openalex.org/C12267149 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5200855135917664 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[4].display_name | Support vector machine |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5011823177337646 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C169258074 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4345414340496063 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[6].display_name | Random forest |
| concepts[7].id | https://openalex.org/C140205800 |
| concepts[7].level | 3 |
| concepts[7].score | 0.43326103687286377 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5860 |
| concepts[7].display_name | Carbon fibers |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.23407581448554993 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C104779481 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q50707 |
| concepts[9].display_name | Composite number |
| keywords[0].id | https://openalex.org/keywords/machine-learning |
| keywords[0].score | 0.7010257244110107 |
| keywords[0].display_name | Machine learning |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6749005913734436 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6341285705566406 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/extreme-learning-machine |
| keywords[3].score | 0.6120243668556213 |
| keywords[3].display_name | Extreme learning machine |
| keywords[4].id | https://openalex.org/keywords/support-vector-machine |
| keywords[4].score | 0.5200855135917664 |
| keywords[4].display_name | Support vector machine |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5011823177337646 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/random-forest |
| keywords[6].score | 0.4345414340496063 |
| keywords[6].display_name | Random forest |
| keywords[7].id | https://openalex.org/keywords/carbon-fibers |
| keywords[7].score | 0.43326103687286377 |
| keywords[7].display_name | Carbon fibers |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.23407581448554993 |
| keywords[8].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.3390/su15086876 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S10134376 |
| locations[0].source.issn | 2071-1050 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2071-1050 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Sustainability |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2071-1050/15/8/6876/pdf?version=1681901800 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sustainability |
| locations[0].landing_page_url | https://doi.org/10.3390/su15086876 |
| locations[1].id | pmh:oai:mdpi.com:/2071-1050/15/8/6876/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sustainability; Volume 15; Issue 8; Pages: 6876 |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/su15086876 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5113749269 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yuhong Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[0].institutions[0].id | https://openalex.org/I37796252 |
| authorships[0].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuhong Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[1].author.id | https://openalex.org/A5100654404 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5314-8477 |
| authorships[1].author.display_name | Ruirui Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I37796252 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[1].institutions[0].id | https://openalex.org/I37796252 |
| authorships[1].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruirui Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[2].author.id | https://openalex.org/A5009814734 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4251-5702 |
| authorships[2].author.display_name | Zhansheng Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I37796252 |
| authorships[2].affiliations[1].raw_affiliation_string | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China |
| authorships[2].institutions[0].id | https://openalex.org/I37796252 |
| authorships[2].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhansheng Liu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[3].author.id | https://openalex.org/A5100601806 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4764-0174 |
| authorships[3].author.display_name | Liang Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I37796252 |
| authorships[3].affiliations[1].raw_affiliation_string | Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[3].institutions[0].id | https://openalex.org/I37796252 |
| authorships[3].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liang Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[4].author.id | https://openalex.org/A5100426882 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8388-9153 |
| authorships[4].author.display_name | Jingjing Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I37796252 |
| authorships[4].affiliations[1].raw_affiliation_string | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China |
| authorships[4].institutions[0].id | https://openalex.org/I37796252 |
| authorships[4].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jingjing Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[5].author.id | https://openalex.org/A5101696252 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7855-4607 |
| authorships[5].author.display_name | Wenxiang Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[5].affiliations[0].raw_affiliation_string | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I37796252 |
| authorships[5].affiliations[1].raw_affiliation_string | Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| authorships[5].institutions[0].id | https://openalex.org/I37796252 |
| authorships[5].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beijing University of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wenxiang Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2071-1050/15/8/6876/pdf?version=1681901800 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Review of Macroscopic Carbon Emission Prediction Model Based on Machine Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12120 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9940999746322632 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Air Quality Monitoring and Forecasting |
| related_works | https://openalex.org/W2067443264, https://openalex.org/W31566076, https://openalex.org/W4297902562, https://openalex.org/W2741186499, https://openalex.org/W2804652951, https://openalex.org/W2968645206, https://openalex.org/W4396689146, https://openalex.org/W4200112873, https://openalex.org/W2955796858, https://openalex.org/W2004826645 |
| cited_by_count | 51 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 18 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 23 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/su15086876 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S10134376 |
| best_oa_location.source.issn | 2071-1050 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2071-1050 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Sustainability |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2071-1050/15/8/6876/pdf?version=1681901800 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sustainability |
| best_oa_location.landing_page_url | https://doi.org/10.3390/su15086876 |
| primary_location.id | doi:10.3390/su15086876 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S10134376 |
| primary_location.source.issn | 2071-1050 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2071-1050 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Sustainability |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2071-1050/15/8/6876/pdf?version=1681901800 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sustainability |
| primary_location.landing_page_url | https://doi.org/10.3390/su15086876 |
| publication_date | 2023-04-19 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2259812487, https://openalex.org/W1987807993, https://openalex.org/W2155657253, https://openalex.org/W2118420853, https://openalex.org/W2066209738, https://openalex.org/W2920793549, https://openalex.org/W4229457121, https://openalex.org/W2063231206, https://openalex.org/W2069784583, https://openalex.org/W2981223428, https://openalex.org/W2044055559, https://openalex.org/W2989530049, https://openalex.org/W2626749429, https://openalex.org/W4289869546, https://openalex.org/W2931192832, https://openalex.org/W2990474957, https://openalex.org/W3017262917, https://openalex.org/W4285092006, https://openalex.org/W2995422588, https://openalex.org/W3164891610, https://openalex.org/W3139238638, https://openalex.org/W2463282811, https://openalex.org/W2789606599, https://openalex.org/W2965720486, https://openalex.org/W3112118571, https://openalex.org/W4280577942, https://openalex.org/W3007709767, https://openalex.org/W4281482219, https://openalex.org/W3196034740, https://openalex.org/W3185989864, https://openalex.org/W3213417474, https://openalex.org/W2134603844, https://openalex.org/W2301541953, https://openalex.org/W2121971770, https://openalex.org/W3005103992, https://openalex.org/W3169962164, https://openalex.org/W3005888476, https://openalex.org/W3212071451, https://openalex.org/W4296095780, https://openalex.org/W2734180476, https://openalex.org/W2519101444, https://openalex.org/W2805221327, https://openalex.org/W2791217703, https://openalex.org/W3090601702, https://openalex.org/W2597154958, https://openalex.org/W2983620935, https://openalex.org/W2762773222, https://openalex.org/W2285944352, https://openalex.org/W4297898256, https://openalex.org/W2966164308, https://openalex.org/W3205227054, https://openalex.org/W2896532220, https://openalex.org/W4225253992, https://openalex.org/W3202914192, https://openalex.org/W2953858871, https://openalex.org/W2810977803, https://openalex.org/W3159531356, https://openalex.org/W2885778707, https://openalex.org/W4281258564, https://openalex.org/W2753260324, https://openalex.org/W4206196604, https://openalex.org/W2493863649, https://openalex.org/W2031258979, https://openalex.org/W3199721246, https://openalex.org/W2943767601, https://openalex.org/W3015528484, https://openalex.org/W2975108999, https://openalex.org/W2966371659, https://openalex.org/W4292219958, https://openalex.org/W2725058992, https://openalex.org/W2795153861, https://openalex.org/W3004899260, https://openalex.org/W3168072812, https://openalex.org/W2982398001, https://openalex.org/W3023318912, https://openalex.org/W2994866250 |
| referenced_works_count | 76 |
| abstract_inverted_index.a | 85, 140 |
| abstract_inverted_index.By | 125 |
| abstract_inverted_index.In | 54 |
| abstract_inverted_index.It | 77 |
| abstract_inverted_index.by | 72 |
| abstract_inverted_index.in | 70, 88 |
| abstract_inverted_index.is | 68 |
| abstract_inverted_index.of | 3, 17, 27, 44, 60, 74, 91, 129, 133, 148 |
| abstract_inverted_index.on | 106, 153, 164 |
| abstract_inverted_index.to | 39, 48, 64 |
| abstract_inverted_index.we | 143 |
| abstract_inverted_index.and | 6, 20, 42, 52, 96, 121, 138, 151 |
| abstract_inverted_index.are | 103, 167 |
| abstract_inverted_index.due | 47 |
| abstract_inverted_index.for | 158 |
| abstract_inverted_index.has | 13, 83 |
| abstract_inverted_index.hot | 86 |
| abstract_inverted_index.set | 14 |
| abstract_inverted_index.the | 1, 7, 10, 15, 24, 40, 57, 89, 97, 127, 145 |
| abstract_inverted_index.was | 78 |
| abstract_inverted_index.With | 23 |
| abstract_inverted_index.also | 36 |
| abstract_inverted_index.back | 107 |
| abstract_inverted_index.been | 37 |
| abstract_inverted_index.each | 149 |
| abstract_inverted_index.five | 131 |
| abstract_inverted_index.goal | 16 |
| abstract_inverted_index.have | 35 |
| abstract_inverted_index.high | 50 |
| abstract_inverted_index.long | 114 |
| abstract_inverted_index.main | 98 |
| abstract_inverted_index.some | 30 |
| abstract_inverted_index.that | 80 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.Under | 0 |
| abstract_inverted_index.based | 105, 152, 163 |
| abstract_inverted_index.field | 90 |
| abstract_inverted_index.found | 79 |
| abstract_inverted_index.ideas | 157 |
| abstract_inverted_index.means | 73 |
| abstract_inverted_index.paper | 75 |
| abstract_inverted_index.rapid | 25 |
| abstract_inverted_index.their | 49 |
| abstract_inverted_index.these | 130 |
| abstract_inverted_index.this, | 154 |
| abstract_inverted_index.topic | 87 |
| abstract_inverted_index.types | 132 |
| abstract_inverted_index.become | 84 |
| abstract_inverted_index.carbon | 18, 21, 45, 65, 92, 99, 134, 159 |
| abstract_inverted_index.detail | 71 |
| abstract_inverted_index.energy | 8 |
| abstract_inverted_index.future | 155 |
| abstract_inverted_index.global | 4 |
| abstract_inverted_index.mainly | 104 |
| abstract_inverted_index.memory | 116 |
| abstract_inverted_index.model, | 150 |
| abstract_inverted_index.models | 102, 137, 162 |
| abstract_inverted_index.neural | 109, 117 |
| abstract_inverted_index.paper, | 56 |
| abstract_inverted_index.random | 119 |
| abstract_inverted_index.vector | 112 |
| abstract_inverted_index.Chinese | 11 |
| abstract_inverted_index.applied | 38, 63 |
| abstract_inverted_index.control | 41 |
| abstract_inverted_index.crisis, | 9 |
| abstract_inverted_index.current | 58 |
| abstract_inverted_index.extreme | 122 |
| abstract_inverted_index.forests | 120 |
| abstract_inverted_index.machine | 28, 32, 61, 81, 165 |
| abstract_inverted_index.models, | 95 |
| abstract_inverted_index.peaking | 19 |
| abstract_inverted_index.studied | 69 |
| abstract_inverted_index.support | 111 |
| abstract_inverted_index.warming | 5 |
| abstract_inverted_index.advanced | 31 |
| abstract_inverted_index.emission | 66, 93, 100, 135, 160 |
| abstract_inverted_index.learning | 33, 62, 82, 123, 166 |
| abstract_inverted_index.research | 156 |
| abstract_inverted_index.accuracy. | 53 |
| abstract_inverted_index.analysis, | 142 |
| abstract_inverted_index.emissions | 46 |
| abstract_inverted_index.learning, | 29 |
| abstract_inverted_index.machines, | 113 |
| abstract_inverted_index.machines. | 124 |
| abstract_inverted_index.networks, | 110, 118 |
| abstract_inverted_index.proposed. | 168 |
| abstract_inverted_index.situation | 59 |
| abstract_inverted_index.algorithms | 34 |
| abstract_inverted_index.applicable | 146 |
| abstract_inverted_index.background | 2 |
| abstract_inverted_index.conducting | 139 |
| abstract_inverted_index.describing | 126 |
| abstract_inverted_index.determined | 144 |
| abstract_inverted_index.efficiency | 51 |
| abstract_inverted_index.government | 12 |
| abstract_inverted_index.prediction | 43, 67, 94, 101, 136, 161 |
| abstract_inverted_index.retrieval. | 76 |
| abstract_inverted_index.short-term | 115 |
| abstract_inverted_index.comparative | 141 |
| abstract_inverted_index.development | 26 |
| abstract_inverted_index.propagation | 108 |
| abstract_inverted_index.characteristics | 128, 147 |
| abstract_inverted_index.neutralization. | 22 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5009814734 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I37796252 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.98349603 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |