A Review of Neural Network based Semantic Segmentation for Scene Understanding in Context of the self driving Car Article Swipe
YOU?
·
· 2017
· Open Access
·
This paper tackles the challenge of scene understanding in context of automated driving. To react properly to the conditions given by the surrounding scene, the car has to understand it’s environment. Further the real time capability of a method solving this task is essential. \nFor scene understanding the car has to detect and classify surrounding objects. For this purpose one can employ a semantic segmentation to assign a class label to every pixel. \nIn this paper we evaluate the the state of the art methods for the semantic segmentation and perform tests on the FCN-8 architecture. Due to Hardware limitations, we train the FCN-8 on a downscaled version of the Cityscapes Dataset, containing urban traffic scenes. The evaluation of the results shows, the necessity to train the FCN-8 on the original size City Scapes Dataset. We conclude that we need to purchase a better hardware.
Related Topics
- Type
- review
- Language
- en
- https://elib.dlr.de/110862/1/PaperStudierendentagungJoshuaNiemeijer.pdf
- OA Status
- green
- Cited By
- 5
- References
- 5
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2726651278
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2726651278Canonical identifier for this work in OpenAlex
- Title
-
A Review of Neural Network based Semantic Segmentation for Scene Understanding in Context of the self driving CarWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Joshua Niemeijer, Paulin Pekezou Fouopi, Sascha Knake-Langhorst, Erhardt BarthList of authors in order
- PDF URL
-
https://elib.dlr.de/110862/1/PaperStudierendentagungJoshuaNiemeijer.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://elib.dlr.de/110862/1/PaperStudierendentagungJoshuaNiemeijer.pdfDirect OA link when available
- Concepts
-
Segmentation, Computer science, Task (project management), Artificial intelligence, Context (archaeology), Class (philosophy), Computer vision, Deep neural networks, Artificial neural network, Architecture, State (computer science), Image segmentation, Pixel, Machine learning, Geography, Engineering, Systems engineering, Archaeology, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 1, 2020: 2, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2726651278 |
|---|---|
| doi | |
| ids.mag | 2726651278 |
| ids.openalex | https://openalex.org/W2726651278 |
| fwci | 0.19009269 |
| type | review |
| title | A Review of Neural Network based Semantic Segmentation for Scene Understanding in Context of the self driving Car |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8328511714935303 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8051013946533203 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6972957849502563 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6885422468185425 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2779343474 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6721637845039368 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[4].display_name | Context (archaeology) |
| concepts[5].id | https://openalex.org/C2777212361 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5646843910217285 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[5].display_name | Class (philosophy) |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5111480355262756 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C2984842247 |
| concepts[7].level | 3 |
| concepts[7].score | 0.47675830125808716 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep neural networks |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4623696804046631 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C123657996 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44526946544647217 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[9].display_name | Architecture |
| concepts[10].id | https://openalex.org/C48103436 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44467592239379883 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[10].display_name | State (computer science) |
| concepts[11].id | https://openalex.org/C124504099 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4333992004394531 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[11].display_name | Image segmentation |
| concepts[12].id | https://openalex.org/C160633673 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4315570592880249 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[12].display_name | Pixel |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3255808651447296 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.08252766728401184 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0656096339225769 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C201995342 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[16].display_name | Systems engineering |
| concepts[17].id | https://openalex.org/C166957645 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[17].display_name | Archaeology |
| concepts[18].id | https://openalex.org/C11413529 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[18].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.8328511714935303 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8051013946533203 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.6972957849502563 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6885422468185425 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/context |
| keywords[4].score | 0.6721637845039368 |
| keywords[4].display_name | Context (archaeology) |
| keywords[5].id | https://openalex.org/keywords/class |
| keywords[5].score | 0.5646843910217285 |
| keywords[5].display_name | Class (philosophy) |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.5111480355262756 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[7].score | 0.47675830125808716 |
| keywords[7].display_name | Deep neural networks |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.4623696804046631 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/architecture |
| keywords[9].score | 0.44526946544647217 |
| keywords[9].display_name | Architecture |
| keywords[10].id | https://openalex.org/keywords/state |
| keywords[10].score | 0.44467592239379883 |
| keywords[10].display_name | State (computer science) |
| keywords[11].id | https://openalex.org/keywords/image-segmentation |
| keywords[11].score | 0.4333992004394531 |
| keywords[11].display_name | Image segmentation |
| keywords[12].id | https://openalex.org/keywords/pixel |
| keywords[12].score | 0.4315570592880249 |
| keywords[12].display_name | Pixel |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.3255808651447296 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.08252766728401184 |
| keywords[14].display_name | Geography |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.0656096339225769 |
| keywords[15].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:elib.dlr.de:110862 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4377196266 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | elib (German Aerospace Center) |
| locations[0].source.host_organization | https://openalex.org/I2898391981 |
| locations[0].source.host_organization_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| locations[0].source.host_organization_lineage | https://openalex.org/I2898391981 |
| locations[0].license | |
| locations[0].pdf_url | https://elib.dlr.de/110862/1/PaperStudierendentagungJoshuaNiemeijer.pdf |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Konferenzbeitrag |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | |
| locations[1].id | mag:2726651278 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://elib.dlr.de/110862/ |
| authorships[0].author.id | https://openalex.org/A5051883345 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2417-8749 |
| authorships[0].author.display_name | Joshua Niemeijer |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshua Niemeijer |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053489719 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Paulin Pekezou Fouopi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Paulin Pekezou Fouopi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5025795033 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7399-0939 |
| authorships[2].author.display_name | Sascha Knake-Langhorst |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sascha Knake-Langhorst |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021756032 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8556-2472 |
| authorships[3].author.display_name | Erhardt Barth |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Erhardt Barth |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://elib.dlr.de/110862/1/PaperStudierendentagungJoshuaNiemeijer.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Review of Neural Network based Semantic Segmentation for Scene Understanding in Context of the self driving Car |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2807134386, https://openalex.org/W2980556058, https://openalex.org/W3204273712, https://openalex.org/W3033734591, https://openalex.org/W2522924858, https://openalex.org/W3178804606, https://openalex.org/W3045354484, https://openalex.org/W95716432, https://openalex.org/W2940511594, https://openalex.org/W2311917924, https://openalex.org/W2788461656, https://openalex.org/W2996870697, https://openalex.org/W3033515201, https://openalex.org/W2297454107, https://openalex.org/W2585505763, https://openalex.org/W2950405180, https://openalex.org/W2793132020, https://openalex.org/W2743185749, https://openalex.org/W2595096896, https://openalex.org/W2739759330 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:elib.dlr.de:110862 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196266 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | elib (German Aerospace Center) |
| best_oa_location.source.host_organization | https://openalex.org/I2898391981 |
| best_oa_location.source.host_organization_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2898391981 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://elib.dlr.de/110862/1/PaperStudierendentagungJoshuaNiemeijer.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Konferenzbeitrag |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | |
| primary_location.id | pmh:oai:elib.dlr.de:110862 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4377196266 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | elib (German Aerospace Center) |
| primary_location.source.host_organization | https://openalex.org/I2898391981 |
| primary_location.source.host_organization_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| primary_location.source.host_organization_lineage | https://openalex.org/I2898391981 |
| primary_location.license | |
| primary_location.pdf_url | https://elib.dlr.de/110862/1/PaperStudierendentagungJoshuaNiemeijer.pdf |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Konferenzbeitrag |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2508741746, https://openalex.org/W1686810756, https://openalex.org/W1903029394, https://openalex.org/W2296478878, https://openalex.org/W2558580397 |
| referenced_works_count | 5 |
| abstract_inverted_index.a | 37, 61, 66, 103, 140 |
| abstract_inverted_index.To | 13 |
| abstract_inverted_index.We | 133 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.in | 8 |
| abstract_inverted_index.is | 42 |
| abstract_inverted_index.of | 5, 10, 36, 79, 106, 116 |
| abstract_inverted_index.on | 90, 102, 126 |
| abstract_inverted_index.to | 16, 27, 49, 64, 69, 95, 122, 138 |
| abstract_inverted_index.we | 74, 98, 136 |
| abstract_inverted_index.Due | 94 |
| abstract_inverted_index.For | 55 |
| abstract_inverted_index.The | 114 |
| abstract_inverted_index.and | 51, 87 |
| abstract_inverted_index.art | 81 |
| abstract_inverted_index.can | 59 |
| abstract_inverted_index.car | 25, 47 |
| abstract_inverted_index.for | 83 |
| abstract_inverted_index.has | 26, 48 |
| abstract_inverted_index.one | 58 |
| abstract_inverted_index.the | 3, 17, 21, 24, 32, 46, 76, 77, 80, 84, 91, 100, 107, 117, 120, 124, 127 |
| abstract_inverted_index.City | 130 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.need | 137 |
| abstract_inverted_index.real | 33 |
| abstract_inverted_index.size | 129 |
| abstract_inverted_index.task | 41 |
| abstract_inverted_index.that | 135 |
| abstract_inverted_index.this | 40, 56, 72 |
| abstract_inverted_index.time | 34 |
| abstract_inverted_index.FCN-8 | 92, 101, 125 |
| abstract_inverted_index.class | 67 |
| abstract_inverted_index.every | 70 |
| abstract_inverted_index.given | 19 |
| abstract_inverted_index.label | 68 |
| abstract_inverted_index.paper | 1, 73 |
| abstract_inverted_index.react | 14 |
| abstract_inverted_index.scene | 6, 44 |
| abstract_inverted_index.state | 78 |
| abstract_inverted_index.tests | 89 |
| abstract_inverted_index.train | 99, 123 |
| abstract_inverted_index.urban | 111 |
| abstract_inverted_index.Scapes | 131 |
| abstract_inverted_index.assign | 65 |
| abstract_inverted_index.better | 141 |
| abstract_inverted_index.detect | 50 |
| abstract_inverted_index.employ | 60 |
| abstract_inverted_index.it’s | 29 |
| abstract_inverted_index.method | 38 |
| abstract_inverted_index.scene, | 23 |
| abstract_inverted_index.shows, | 119 |
| abstract_inverted_index.Further | 31 |
| abstract_inverted_index.context | 9 |
| abstract_inverted_index.methods | 82 |
| abstract_inverted_index.perform | 88 |
| abstract_inverted_index.purpose | 57 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.scenes. | 113 |
| abstract_inverted_index.solving | 39 |
| abstract_inverted_index.tackles | 2 |
| abstract_inverted_index.traffic | 112 |
| abstract_inverted_index.version | 105 |
| abstract_inverted_index.Dataset, | 109 |
| abstract_inverted_index.Dataset. | 132 |
| abstract_inverted_index.Hardware | 96 |
| abstract_inverted_index.classify | 52 |
| abstract_inverted_index.conclude | 134 |
| abstract_inverted_index.driving. | 12 |
| abstract_inverted_index.evaluate | 75 |
| abstract_inverted_index.objects. | 54 |
| abstract_inverted_index.original | 128 |
| abstract_inverted_index.properly | 15 |
| abstract_inverted_index.purchase | 139 |
| abstract_inverted_index.semantic | 62, 85 |
| abstract_inverted_index.automated | 11 |
| abstract_inverted_index.challenge | 4 |
| abstract_inverted_index.hardware. | 142 |
| abstract_inverted_index.necessity | 121 |
| abstract_inverted_index.Cityscapes | 108 |
| abstract_inverted_index.capability | 35 |
| abstract_inverted_index.conditions | 18 |
| abstract_inverted_index.containing | 110 |
| abstract_inverted_index.downscaled | 104 |
| abstract_inverted_index.evaluation | 115 |
| abstract_inverted_index.understand | 28 |
| abstract_inverted_index.surrounding | 22, 53 |
| abstract_inverted_index.environment. | 30 |
| abstract_inverted_index.limitations, | 97 |
| abstract_inverted_index.segmentation | 63, 86 |
| abstract_inverted_index.architecture. | 93 |
| abstract_inverted_index.understanding | 7, 45 |
| abstract_inverted_index.pixel. \nIn | 71 |
| abstract_inverted_index.essential. \nFor | 43 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.87654321 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |