A Review of Outlier Detection and Robust Estimation Methods for High Dimensional Time Series Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.ecosta.2023.02.001
Diagnostic procedures for finding outliers in high dimensional multivariate time series and robust estimation methods for these data are reviewed. First, methods for searching for outliers assuming that the data have been generated by a Dynamic Factor Model are presented. Then, other existing methods for detecting different types of multivariate time series outliers are analyzed. They include identifying outlying series and, also, looking for segments, or periods of time, where the series have unusual dynamics. Second, robust estimation methods are considered. Dynamic Principal Components, as a very general procedure to estimate the dynamic in a high dimensional data set, is introduced and different types of robust estimation of these components are reviewed. Dynamic Principal Components can be applied for robust estimation of Generalized Dynamic Factor models and some results are given. Finally, other methods proposed for robust estimation of high dimensional VAR models and other multivariate time series problems are also briefly discussed.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ecosta.2023.02.001
- OA Status
- hybrid
- Cited By
- 13
- References
- 90
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4319264512
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4319264512Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ecosta.2023.02.001Digital Object Identifier
- Title
-
A Review of Outlier Detection and Robust Estimation Methods for High Dimensional Time Series DataWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-01Full publication date if available
- Authors
-
Daniel Peña, Vı́ctor J. YohaiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ecosta.2023.02.001Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ecosta.2023.02.001Direct OA link when available
- Concepts
-
Outlier, Multivariate statistics, Series (stratigraphy), Principal component analysis, Computer science, Anomaly detection, Time series, Data mining, Robust statistics, Dynamic factor, Estimation, Pattern recognition (psychology), Statistics, Mathematics, Artificial intelligence, Machine learning, Engineering, Biology, Systems engineering, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 5, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
90Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4319264512 |
|---|---|
| doi | https://doi.org/10.1016/j.ecosta.2023.02.001 |
| ids.doi | https://doi.org/10.1016/j.ecosta.2023.02.001 |
| ids.openalex | https://openalex.org/W4319264512 |
| fwci | 8.30126963 |
| type | review |
| title | A Review of Outlier Detection and Robust Estimation Methods for High Dimensional Time Series Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T11443 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9876999855041504 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Advanced Statistical Process Monitoring |
| topics[2].id | https://openalex.org/T10282 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9772999882698059 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2003 |
| topics[2].subfield.display_name | Finance |
| topics[2].display_name | Financial Risk and Volatility Modeling |
| is_xpac | False |
| apc_list.value | 1540 |
| apc_list.currency | USD |
| apc_list.value_usd | 1540 |
| apc_paid.value | 1540 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1540 |
| concepts[0].id | https://openalex.org/C79337645 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8172243237495422 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[0].display_name | Outlier |
| concepts[1].id | https://openalex.org/C161584116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.702277421951294 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[1].display_name | Multivariate statistics |
| concepts[2].id | https://openalex.org/C143724316 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6659148335456848 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[2].display_name | Series (stratigraphy) |
| concepts[3].id | https://openalex.org/C27438332 |
| concepts[3].level | 2 |
| concepts[3].score | 0.595084011554718 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[3].display_name | Principal component analysis |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5822373032569885 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C739882 |
| concepts[5].level | 2 |
| concepts[5].score | 0.572454571723938 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[5].display_name | Anomaly detection |
| concepts[6].id | https://openalex.org/C151406439 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5697687268257141 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[6].display_name | Time series |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5082587599754333 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C67226441 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4487555921077728 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1665389 |
| concepts[8].display_name | Robust statistics |
| concepts[9].id | https://openalex.org/C155702961 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4359707236289978 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5318975 |
| concepts[9].display_name | Dynamic factor |
| concepts[10].id | https://openalex.org/C96250715 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42730990052223206 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[10].display_name | Estimation |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3441334366798401 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3042639493942261 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.29884177446365356 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2843495011329651 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.19854038953781128 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.07651928067207336 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C201995342 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[18].display_name | Systems engineering |
| concepts[19].id | https://openalex.org/C151730666 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[19].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/outlier |
| keywords[0].score | 0.8172243237495422 |
| keywords[0].display_name | Outlier |
| keywords[1].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[1].score | 0.702277421951294 |
| keywords[1].display_name | Multivariate statistics |
| keywords[2].id | https://openalex.org/keywords/series |
| keywords[2].score | 0.6659148335456848 |
| keywords[2].display_name | Series (stratigraphy) |
| keywords[3].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[3].score | 0.595084011554718 |
| keywords[3].display_name | Principal component analysis |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5822373032569885 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/anomaly-detection |
| keywords[5].score | 0.572454571723938 |
| keywords[5].display_name | Anomaly detection |
| keywords[6].id | https://openalex.org/keywords/time-series |
| keywords[6].score | 0.5697687268257141 |
| keywords[6].display_name | Time series |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.5082587599754333 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/robust-statistics |
| keywords[8].score | 0.4487555921077728 |
| keywords[8].display_name | Robust statistics |
| keywords[9].id | https://openalex.org/keywords/dynamic-factor |
| keywords[9].score | 0.4359707236289978 |
| keywords[9].display_name | Dynamic factor |
| keywords[10].id | https://openalex.org/keywords/estimation |
| keywords[10].score | 0.42730990052223206 |
| keywords[10].display_name | Estimation |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3441334366798401 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.3042639493942261 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.29884177446365356 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.2843495011329651 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/machine-learning |
| keywords[15].score | 0.19854038953781128 |
| keywords[15].display_name | Machine learning |
| keywords[16].id | https://openalex.org/keywords/engineering |
| keywords[16].score | 0.07651928067207336 |
| keywords[16].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.ecosta.2023.02.001 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898363556 |
| locations[0].source.issn | 2452-3062, 2468-0389 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2452-3062 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Econometrics and Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Econometrics and Statistics |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ecosta.2023.02.001 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5088521043 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9137-1557 |
| authorships[0].author.display_name | Daniel Peña |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I50357001 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics, Universidad Carlos III de Madrid, Getafe, 28903, Madrid, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I50357001 |
| authorships[0].institutions[0].ror | https://ror.org/03ths8210 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I50357001 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad Carlos III de Madrid |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel Peña |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Statistics, Universidad Carlos III de Madrid, Getafe, 28903, Madrid, Spain |
| authorships[1].author.id | https://openalex.org/A5110016441 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Vı́ctor J. Yohai |
| authorships[1].countries | AR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24354313, https://openalex.org/I53241121 |
| authorships[1].affiliations[0].raw_affiliation_string | Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, Argentina |
| authorships[1].institutions[0].id | https://openalex.org/I53241121 |
| authorships[1].institutions[0].ror | https://ror.org/05rxmkq09 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I53241121 |
| authorships[1].institutions[0].country_code | AR |
| authorships[1].institutions[0].display_name | Fundación Ciencias Exactas y Naturales |
| authorships[1].institutions[1].id | https://openalex.org/I24354313 |
| authorships[1].institutions[1].ror | https://ror.org/0081fs513 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I24354313 |
| authorships[1].institutions[1].country_code | AR |
| authorships[1].institutions[1].display_name | Universidad de Buenos Aires |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Víctor J. Yohai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires, Argentina |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ecosta.2023.02.001 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Review of Outlier Detection and Robust Estimation Methods for High Dimensional Time Series Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W2499612753, https://openalex.org/W3111802945, https://openalex.org/W2946096271, https://openalex.org/W2295423552, https://openalex.org/W2046343964, https://openalex.org/W3107369729, https://openalex.org/W4379515847, https://openalex.org/W2216963642, https://openalex.org/W2283061017, https://openalex.org/W3121734683 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ecosta.2023.02.001 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898363556 |
| best_oa_location.source.issn | 2452-3062, 2468-0389 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2452-3062 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Econometrics and Statistics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Econometrics and Statistics |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ecosta.2023.02.001 |
| primary_location.id | doi:10.1016/j.ecosta.2023.02.001 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898363556 |
| primary_location.source.issn | 2452-3062, 2468-0389 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2452-3062 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Econometrics and Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Econometrics and Statistics |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ecosta.2023.02.001 |
| publication_date | 2023-02-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3003783990, https://openalex.org/W2892224330, https://openalex.org/W2159706540, https://openalex.org/W1970562500, https://openalex.org/W2171778903, https://openalex.org/W2005744010, https://openalex.org/W2117890631, https://openalex.org/W3009819786, https://openalex.org/W1930532815, https://openalex.org/W3155567600, https://openalex.org/W1988861237, https://openalex.org/W3129086483, https://openalex.org/W6603826013, https://openalex.org/W2977950635, https://openalex.org/W2121135122, https://openalex.org/W2055894834, https://openalex.org/W2087165782, https://openalex.org/W2963426032, https://openalex.org/W3155924142, https://openalex.org/W2963840025, https://openalex.org/W3192637965, https://openalex.org/W1991135386, https://openalex.org/W4012559, https://openalex.org/W1998823014, https://openalex.org/W6799120000, https://openalex.org/W2026493302, https://openalex.org/W2030677701, https://openalex.org/W2095225664, https://openalex.org/W3094643814, https://openalex.org/W2071128523, https://openalex.org/W2046033161, https://openalex.org/W6695181781, https://openalex.org/W1542470279, https://openalex.org/W6813741887, https://openalex.org/W2062207171, https://openalex.org/W2005951985, https://openalex.org/W2950126918, https://openalex.org/W2089682775, https://openalex.org/W1979486458, https://openalex.org/W3203359490, https://openalex.org/W3187804014, https://openalex.org/W6662102447, https://openalex.org/W2027639380, https://openalex.org/W6803369798, https://openalex.org/W2083474373, https://openalex.org/W6726573566, https://openalex.org/W1987466849, https://openalex.org/W4205479174, https://openalex.org/W2164570713, https://openalex.org/W2963724581, https://openalex.org/W2914576261, https://openalex.org/W2266349331, https://openalex.org/W4366381862, https://openalex.org/W6640872024, https://openalex.org/W2798548367, https://openalex.org/W2152701363, https://openalex.org/W6601436071, https://openalex.org/W1982733046, https://openalex.org/W2079563517, https://openalex.org/W6763983347, https://openalex.org/W2904285708, https://openalex.org/W3005862999, https://openalex.org/W2129214133, https://openalex.org/W2000145235, https://openalex.org/W3179386522, https://openalex.org/W2964255370, https://openalex.org/W6798664982, https://openalex.org/W6768257587, https://openalex.org/W2031893417, https://openalex.org/W2274029167, https://openalex.org/W2022367269, https://openalex.org/W6779992589, https://openalex.org/W1999177119, https://openalex.org/W3214012455, https://openalex.org/W3037186609, https://openalex.org/W4248078258, https://openalex.org/W3183943738, https://openalex.org/W4301410333, https://openalex.org/W4247613105, https://openalex.org/W2491844331, https://openalex.org/W3101440325, https://openalex.org/W2046692379, https://openalex.org/W3146982637, https://openalex.org/W4234683167, https://openalex.org/W3102008520, https://openalex.org/W4241492760, https://openalex.org/W4237927139, https://openalex.org/W2519361222, https://openalex.org/W2796569408, https://openalex.org/W2973143801 |
| referenced_works_count | 90 |
| abstract_inverted_index.a | 34, 85, 94 |
| abstract_inverted_index.as | 84 |
| abstract_inverted_index.be | 116 |
| abstract_inverted_index.by | 33 |
| abstract_inverted_index.in | 5, 93 |
| abstract_inverted_index.is | 99 |
| abstract_inverted_index.of | 48, 67, 104, 107, 121, 138 |
| abstract_inverted_index.or | 65 |
| abstract_inverted_index.to | 89 |
| abstract_inverted_index.VAR | 141 |
| abstract_inverted_index.and | 11, 101, 126, 143 |
| abstract_inverted_index.are | 18, 38, 53, 79, 110, 129, 149 |
| abstract_inverted_index.can | 115 |
| abstract_inverted_index.for | 2, 15, 22, 24, 44, 63, 118, 135 |
| abstract_inverted_index.the | 28, 70, 91 |
| abstract_inverted_index.They | 55 |
| abstract_inverted_index.also | 150 |
| abstract_inverted_index.and, | 60 |
| abstract_inverted_index.been | 31 |
| abstract_inverted_index.data | 17, 29, 97 |
| abstract_inverted_index.have | 30, 72 |
| abstract_inverted_index.high | 6, 95, 139 |
| abstract_inverted_index.set, | 98 |
| abstract_inverted_index.some | 127 |
| abstract_inverted_index.that | 27 |
| abstract_inverted_index.time | 9, 50, 146 |
| abstract_inverted_index.very | 86 |
| abstract_inverted_index.Model | 37 |
| abstract_inverted_index.Then, | 40 |
| abstract_inverted_index.also, | 61 |
| abstract_inverted_index.other | 41, 132, 144 |
| abstract_inverted_index.these | 16, 108 |
| abstract_inverted_index.time, | 68 |
| abstract_inverted_index.types | 47, 103 |
| abstract_inverted_index.where | 69 |
| abstract_inverted_index.Factor | 36, 124 |
| abstract_inverted_index.First, | 20 |
| abstract_inverted_index.given. | 130 |
| abstract_inverted_index.models | 125, 142 |
| abstract_inverted_index.robust | 12, 76, 105, 119, 136 |
| abstract_inverted_index.series | 10, 51, 59, 71, 147 |
| abstract_inverted_index.Dynamic | 35, 81, 112, 123 |
| abstract_inverted_index.Second, | 75 |
| abstract_inverted_index.applied | 117 |
| abstract_inverted_index.briefly | 151 |
| abstract_inverted_index.dynamic | 92 |
| abstract_inverted_index.finding | 3 |
| abstract_inverted_index.general | 87 |
| abstract_inverted_index.include | 56 |
| abstract_inverted_index.looking | 62 |
| abstract_inverted_index.methods | 14, 21, 43, 78, 133 |
| abstract_inverted_index.periods | 66 |
| abstract_inverted_index.results | 128 |
| abstract_inverted_index.unusual | 73 |
| abstract_inverted_index.Finally, | 131 |
| abstract_inverted_index.assuming | 26 |
| abstract_inverted_index.estimate | 90 |
| abstract_inverted_index.existing | 42 |
| abstract_inverted_index.outliers | 4, 25, 52 |
| abstract_inverted_index.outlying | 58 |
| abstract_inverted_index.problems | 148 |
| abstract_inverted_index.proposed | 134 |
| abstract_inverted_index.Principal | 82, 113 |
| abstract_inverted_index.analyzed. | 54 |
| abstract_inverted_index.detecting | 45 |
| abstract_inverted_index.different | 46, 102 |
| abstract_inverted_index.dynamics. | 74 |
| abstract_inverted_index.generated | 32 |
| abstract_inverted_index.procedure | 88 |
| abstract_inverted_index.reviewed. | 19, 111 |
| abstract_inverted_index.searching | 23 |
| abstract_inverted_index.segments, | 64 |
| abstract_inverted_index.Components | 114 |
| abstract_inverted_index.Diagnostic | 0 |
| abstract_inverted_index.components | 109 |
| abstract_inverted_index.discussed. | 152 |
| abstract_inverted_index.estimation | 13, 77, 106, 120, 137 |
| abstract_inverted_index.introduced | 100 |
| abstract_inverted_index.presented. | 39 |
| abstract_inverted_index.procedures | 1 |
| abstract_inverted_index.Components, | 83 |
| abstract_inverted_index.Generalized | 122 |
| abstract_inverted_index.considered. | 80 |
| abstract_inverted_index.dimensional | 7, 96, 140 |
| abstract_inverted_index.identifying | 57 |
| abstract_inverted_index.multivariate | 8, 49, 145 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5088521043 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I50357001 |
| citation_normalized_percentile.value | 0.96208675 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |