A Review on Prostate Cancer Detection using CNN Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.22214/ijraset.2022.40747
Prostate cancer is the second biggest cause of mortality in men, according to statistics. It's said to be a slow-growing malignancy that doesn't exhibit symptoms until it’s advanced. Over the last few years, numerous studies on AI algorithms processing various medical imaging such as CT, MRI, and Ultrasound have been conducted. Using AI to manage prostate cancer would have a significant influence on healthcare. With almost 1.3 million new cases identified each year around the world, cancer experts would have a better grasp of the disease and be able to generate more accurate cancer detection forecasts. We give a review of the usage of CNN applied to several automatic processing tasks of prostate cancer detection and diagnosis, to provide an overview of the progress in this field, based on the increased interest of CNN in recent years. We've noticed that the use of CNN has skyrocketed, with outstanding results obtained either with fresh models or employing pre-trained networks for transfer learning. According to the results of the survey, deep learning-based research outperforms traditional patient prognosis techniques in terms of accuracy. Keywords: Convolutional Neural Network, Deep Learning, Prostate Cancer Detection, Artificial Intelligence, Survey.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- http://doi.org/10.22214/ijraset.2022.40747
- https://doi.org/10.22214/ijraset.2022.40747
- OA Status
- diamond
- Cited By
- 2
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4220661815
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4220661815Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22214/ijraset.2022.40747Digital Object Identifier
- Title
-
A Review on Prostate Cancer Detection using CNNWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-17Full publication date if available
- Authors
-
Merlyn Koonamparampath, Raj J. Shah, Mahipal Sundvesha, Meena UgaleList of authors in order
- Landing page
-
https://doi.org/10.22214/ijraset.2022.40747Publisher landing page
- PDF URL
-
https://doi.org/10.22214/ijraset.2022.40747Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.22214/ijraset.2022.40747Direct OA link when available
- Concepts
-
Prostate cancer, Convolutional neural network, Transfer of learning, Computer science, Artificial intelligence, Deep learning, Malignancy, Machine learning, Cancer, Artificial neural network, Medical physics, Medicine, Pathology, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4220661815 |
|---|---|
| doi | https://doi.org/10.22214/ijraset.2022.40747 |
| ids.doi | https://doi.org/10.22214/ijraset.2022.40747 |
| ids.openalex | https://openalex.org/W4220661815 |
| fwci | 0.39159764 |
| type | review |
| title | A Review on Prostate Cancer Detection using CNN |
| biblio.issue | 3 |
| biblio.volume | 10 |
| biblio.last_page | 953 |
| biblio.first_page | 948 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9259999990463257 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9243999719619751 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780192828 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8178166151046753 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q181257 |
| concepts[0].display_name | Prostate cancer |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6898765563964844 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C150899416 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6546539068222046 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[2].display_name | Transfer of learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6469478607177734 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6276717782020569 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6243689060211182 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C2779399171 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48602229356765747 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1483951 |
| concepts[6].display_name | Malignancy |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4537239372730255 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C121608353 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4346616566181183 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[8].display_name | Cancer |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41614052653312683 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C19527891 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39310353994369507 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[10].display_name | Medical physics |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3728120028972626 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C142724271 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12659630179405212 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[12].display_name | Pathology |
| concepts[13].id | https://openalex.org/C126322002 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09977877140045166 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[13].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/prostate-cancer |
| keywords[0].score | 0.8178166151046753 |
| keywords[0].display_name | Prostate cancer |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.6898765563964844 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[2].score | 0.6546539068222046 |
| keywords[2].display_name | Transfer of learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6469478607177734 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6276717782020569 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.6243689060211182 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/malignancy |
| keywords[6].score | 0.48602229356765747 |
| keywords[6].display_name | Malignancy |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4537239372730255 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/cancer |
| keywords[8].score | 0.4346616566181183 |
| keywords[8].display_name | Cancer |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.41614052653312683 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/medical-physics |
| keywords[10].score | 0.39310353994369507 |
| keywords[10].display_name | Medical physics |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.3728120028972626 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/pathology |
| keywords[12].score | 0.12659630179405212 |
| keywords[12].display_name | Pathology |
| keywords[13].id | https://openalex.org/keywords/internal-medicine |
| keywords[13].score | 0.09977877140045166 |
| keywords[13].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.22214/ijraset.2022.40747 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764566388 |
| locations[0].source.issn | 2321-9653 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2321-9653 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal for Research in Applied Science and Engineering Technology |
| locations[0].source.host_organization | https://openalex.org/P4322614460 |
| locations[0].source.host_organization_name | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4322614460 |
| locations[0].source.host_organization_lineage_names | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.22214/ijraset.2022.40747 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal for Research in Applied Science and Engineering Technology |
| locations[0].landing_page_url | http://doi.org/10.22214/ijraset.2022.40747 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007100289 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Merlyn Koonamparampath |
| authorships[0].countries | IN, NP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I169877490, https://openalex.org/I4210129773, https://openalex.org/I4210149145 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information Technology, Xavier Institute of Engineering, University of Mumbai, Maharashtra |
| authorships[0].institutions[0].id | https://openalex.org/I169877490 |
| authorships[0].institutions[0].ror | https://ror.org/032hdk172 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I169877490 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | University of Mumbai |
| authorships[0].institutions[1].id | https://openalex.org/I4210149145 |
| authorships[0].institutions[1].ror | https://ror.org/03ntwd790 |
| authorships[0].institutions[1].type | other |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210149145 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Xavier Institute of Communications |
| authorships[0].institutions[2].id | https://openalex.org/I4210129773 |
| authorships[0].institutions[2].ror | https://ror.org/03ny67e60 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I155028946, https://openalex.org/I4210129773 |
| authorships[0].institutions[2].country_code | NP |
| authorships[0].institutions[2].display_name | Institute of Engineering |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Merlyn Koonamparampath |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Information Technology, Xavier Institute of Engineering, University of Mumbai, Maharashtra |
| authorships[1].author.id | https://openalex.org/A5052119250 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9736-4139 |
| authorships[1].author.display_name | Raj J. Shah |
| authorships[1].countries | IN, NP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I169877490, https://openalex.org/I4210129773, https://openalex.org/I4210149145 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Technology, Xavier Institute of Engineering, University of Mumbai, Maharashtra |
| authorships[1].institutions[0].id | https://openalex.org/I169877490 |
| authorships[1].institutions[0].ror | https://ror.org/032hdk172 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I169877490 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | University of Mumbai |
| authorships[1].institutions[1].id | https://openalex.org/I4210149145 |
| authorships[1].institutions[1].ror | https://ror.org/03ntwd790 |
| authorships[1].institutions[1].type | other |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210149145 |
| authorships[1].institutions[1].country_code | IN |
| authorships[1].institutions[1].display_name | Xavier Institute of Communications |
| authorships[1].institutions[2].id | https://openalex.org/I4210129773 |
| authorships[1].institutions[2].ror | https://ror.org/03ny67e60 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I155028946, https://openalex.org/I4210129773 |
| authorships[1].institutions[2].country_code | NP |
| authorships[1].institutions[2].display_name | Institute of Engineering |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Raj Shah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information Technology, Xavier Institute of Engineering, University of Mumbai, Maharashtra |
| authorships[2].author.id | https://openalex.org/A5077547632 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mahipal Sundvesha |
| authorships[2].countries | IN, NP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I169877490, https://openalex.org/I4210129773, https://openalex.org/I4210149145 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Information Technology, Xavier Institute of Engineering, University of Mumbai, Maharashtra |
| authorships[2].institutions[0].id | https://openalex.org/I169877490 |
| authorships[2].institutions[0].ror | https://ror.org/032hdk172 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I169877490 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | University of Mumbai |
| authorships[2].institutions[1].id | https://openalex.org/I4210149145 |
| authorships[2].institutions[1].ror | https://ror.org/03ntwd790 |
| authorships[2].institutions[1].type | other |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210149145 |
| authorships[2].institutions[1].country_code | IN |
| authorships[2].institutions[1].display_name | Xavier Institute of Communications |
| authorships[2].institutions[2].id | https://openalex.org/I4210129773 |
| authorships[2].institutions[2].ror | https://ror.org/03ny67e60 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I155028946, https://openalex.org/I4210129773 |
| authorships[2].institutions[2].country_code | NP |
| authorships[2].institutions[2].display_name | Institute of Engineering |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mahipal Sundvesha |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Information Technology, Xavier Institute of Engineering, University of Mumbai, Maharashtra |
| authorships[3].author.id | https://openalex.org/A5048289532 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Meena Ugale |
| authorships[3].countries | IN, NP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I169877490, https://openalex.org/I4210129773, https://openalex.org/I4210149145 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information Technology, Xavier Institute of Engineering, University of Mumbai, Maharashtra |
| authorships[3].institutions[0].id | https://openalex.org/I169877490 |
| authorships[3].institutions[0].ror | https://ror.org/032hdk172 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I169877490 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | University of Mumbai |
| authorships[3].institutions[1].id | https://openalex.org/I4210149145 |
| authorships[3].institutions[1].ror | https://ror.org/03ntwd790 |
| authorships[3].institutions[1].type | other |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210149145 |
| authorships[3].institutions[1].country_code | IN |
| authorships[3].institutions[1].display_name | Xavier Institute of Communications |
| authorships[3].institutions[2].id | https://openalex.org/I4210129773 |
| authorships[3].institutions[2].ror | https://ror.org/03ny67e60 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I155028946, https://openalex.org/I4210129773 |
| authorships[3].institutions[2].country_code | NP |
| authorships[3].institutions[2].display_name | Institute of Engineering |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Meena Ugale |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information Technology, Xavier Institute of Engineering, University of Mumbai, Maharashtra |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.22214/ijraset.2022.40747 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Review on Prostate Cancer Detection using CNN |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9259999990463257 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W3192840557, https://openalex.org/W3091976719, https://openalex.org/W3018421652, https://openalex.org/W4220996320, https://openalex.org/W4312200629, https://openalex.org/W4285149559, https://openalex.org/W3021430260, https://openalex.org/W4382286161, https://openalex.org/W4386213806, https://openalex.org/W2996856019 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.22214/ijraset.2022.40747 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764566388 |
| best_oa_location.source.issn | 2321-9653 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2321-9653 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal for Research in Applied Science and Engineering Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4322614460 |
| best_oa_location.source.host_organization_name | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4322614460 |
| best_oa_location.source.host_organization_lineage_names | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.22214/ijraset.2022.40747 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal for Research in Applied Science and Engineering Technology |
| best_oa_location.landing_page_url | http://doi.org/10.22214/ijraset.2022.40747 |
| primary_location.id | doi:10.22214/ijraset.2022.40747 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764566388 |
| primary_location.source.issn | 2321-9653 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2321-9653 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal for Research in Applied Science and Engineering Technology |
| primary_location.source.host_organization | https://openalex.org/P4322614460 |
| primary_location.source.host_organization_name | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4322614460 |
| primary_location.source.host_organization_lineage_names | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.22214/ijraset.2022.40747 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal for Research in Applied Science and Engineering Technology |
| primary_location.landing_page_url | http://doi.org/10.22214/ijraset.2022.40747 |
| publication_date | 2022-03-17 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2401520370, https://openalex.org/W3098221112, https://openalex.org/W2793814878, https://openalex.org/W2804383999, https://openalex.org/W2901612843, https://openalex.org/W2803522971, https://openalex.org/W2946147212, https://openalex.org/W2902472343, https://openalex.org/W2999091210, https://openalex.org/W2999399991 |
| referenced_works_count | 10 |
| abstract_inverted_index.a | 19, 60, 81, 99 |
| abstract_inverted_index.AI | 37, 53 |
| abstract_inverted_index.We | 97 |
| abstract_inverted_index.an | 120 |
| abstract_inverted_index.as | 44 |
| abstract_inverted_index.be | 18, 88 |
| abstract_inverted_index.in | 10, 125, 135, 177 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 8, 84, 101, 104, 112, 122, 133, 143, 166, 179 |
| abstract_inverted_index.on | 36, 63, 129 |
| abstract_inverted_index.or | 155 |
| abstract_inverted_index.to | 13, 17, 54, 90, 107, 118, 163 |
| abstract_inverted_index.1.3 | 67 |
| abstract_inverted_index.CNN | 105, 134, 144 |
| abstract_inverted_index.CT, | 45 |
| abstract_inverted_index.and | 47, 87, 116 |
| abstract_inverted_index.few | 32 |
| abstract_inverted_index.for | 159 |
| abstract_inverted_index.has | 145 |
| abstract_inverted_index.new | 69 |
| abstract_inverted_index.the | 4, 30, 75, 85, 102, 123, 130, 141, 164, 167 |
| abstract_inverted_index.use | 142 |
| abstract_inverted_index.Deep | 185 |
| abstract_inverted_index.It's | 15 |
| abstract_inverted_index.MRI, | 46 |
| abstract_inverted_index.Over | 29 |
| abstract_inverted_index.With | 65 |
| abstract_inverted_index.able | 89 |
| abstract_inverted_index.been | 50 |
| abstract_inverted_index.deep | 169 |
| abstract_inverted_index.each | 72 |
| abstract_inverted_index.give | 98 |
| abstract_inverted_index.have | 49, 59, 80 |
| abstract_inverted_index.last | 31 |
| abstract_inverted_index.men, | 11 |
| abstract_inverted_index.more | 92 |
| abstract_inverted_index.said | 16 |
| abstract_inverted_index.such | 43 |
| abstract_inverted_index.that | 22, 140 |
| abstract_inverted_index.this | 126 |
| abstract_inverted_index.with | 147, 152 |
| abstract_inverted_index.year | 73 |
| abstract_inverted_index.Using | 52 |
| abstract_inverted_index.We've | 138 |
| abstract_inverted_index.based | 128 |
| abstract_inverted_index.cases | 70 |
| abstract_inverted_index.cause | 7 |
| abstract_inverted_index.fresh | 153 |
| abstract_inverted_index.grasp | 83 |
| abstract_inverted_index.tasks | 111 |
| abstract_inverted_index.terms | 178 |
| abstract_inverted_index.until | 26 |
| abstract_inverted_index.usage | 103 |
| abstract_inverted_index.would | 58, 79 |
| abstract_inverted_index.Cancer | 188 |
| abstract_inverted_index.Neural | 183 |
| abstract_inverted_index.almost | 66 |
| abstract_inverted_index.around | 74 |
| abstract_inverted_index.better | 82 |
| abstract_inverted_index.cancer | 2, 57, 77, 94, 114 |
| abstract_inverted_index.either | 151 |
| abstract_inverted_index.field, | 127 |
| abstract_inverted_index.it’s | 27 |
| abstract_inverted_index.manage | 55 |
| abstract_inverted_index.models | 154 |
| abstract_inverted_index.recent | 136 |
| abstract_inverted_index.review | 100 |
| abstract_inverted_index.second | 5 |
| abstract_inverted_index.world, | 76 |
| abstract_inverted_index.years, | 33 |
| abstract_inverted_index.years. | 137 |
| abstract_inverted_index.Survey. | 192 |
| abstract_inverted_index.applied | 106 |
| abstract_inverted_index.biggest | 6 |
| abstract_inverted_index.disease | 86 |
| abstract_inverted_index.doesn't | 23 |
| abstract_inverted_index.exhibit | 24 |
| abstract_inverted_index.experts | 78 |
| abstract_inverted_index.imaging | 42 |
| abstract_inverted_index.medical | 41 |
| abstract_inverted_index.million | 68 |
| abstract_inverted_index.noticed | 139 |
| abstract_inverted_index.patient | 174 |
| abstract_inverted_index.provide | 119 |
| abstract_inverted_index.results | 149, 165 |
| abstract_inverted_index.several | 108 |
| abstract_inverted_index.studies | 35 |
| abstract_inverted_index.survey, | 168 |
| abstract_inverted_index.various | 40 |
| abstract_inverted_index.Network, | 184 |
| abstract_inverted_index.Prostate | 1, 187 |
| abstract_inverted_index.accurate | 93 |
| abstract_inverted_index.generate | 91 |
| abstract_inverted_index.interest | 132 |
| abstract_inverted_index.networks | 158 |
| abstract_inverted_index.numerous | 34 |
| abstract_inverted_index.obtained | 150 |
| abstract_inverted_index.overview | 121 |
| abstract_inverted_index.progress | 124 |
| abstract_inverted_index.prostate | 56, 113 |
| abstract_inverted_index.research | 171 |
| abstract_inverted_index.symptoms | 25 |
| abstract_inverted_index.transfer | 160 |
| abstract_inverted_index.Abstract: | 0 |
| abstract_inverted_index.According | 162 |
| abstract_inverted_index.Keywords: | 181 |
| abstract_inverted_index.Learning, | 186 |
| abstract_inverted_index.according | 12 |
| abstract_inverted_index.accuracy. | 180 |
| abstract_inverted_index.advanced. | 28 |
| abstract_inverted_index.automatic | 109 |
| abstract_inverted_index.detection | 95, 115 |
| abstract_inverted_index.employing | 156 |
| abstract_inverted_index.increased | 131 |
| abstract_inverted_index.influence | 62 |
| abstract_inverted_index.learning. | 161 |
| abstract_inverted_index.mortality | 9 |
| abstract_inverted_index.prognosis | 175 |
| abstract_inverted_index.Artificial | 190 |
| abstract_inverted_index.Detection, | 189 |
| abstract_inverted_index.Ultrasound | 48 |
| abstract_inverted_index.algorithms | 38 |
| abstract_inverted_index.conducted. | 51 |
| abstract_inverted_index.diagnosis, | 117 |
| abstract_inverted_index.forecasts. | 96 |
| abstract_inverted_index.identified | 71 |
| abstract_inverted_index.malignancy | 21 |
| abstract_inverted_index.processing | 39, 110 |
| abstract_inverted_index.techniques | 176 |
| abstract_inverted_index.healthcare. | 64 |
| abstract_inverted_index.outperforms | 172 |
| abstract_inverted_index.outstanding | 148 |
| abstract_inverted_index.pre-trained | 157 |
| abstract_inverted_index.significant | 61 |
| abstract_inverted_index.statistics. | 14 |
| abstract_inverted_index.traditional | 173 |
| abstract_inverted_index.skyrocketed, | 146 |
| abstract_inverted_index.slow-growing | 20 |
| abstract_inverted_index.Convolutional | 182 |
| abstract_inverted_index.Intelligence, | 191 |
| abstract_inverted_index.learning-based | 170 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.60053516 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |