A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1259/dmfr.20210437
Computer-assisted surgery (CAS) allows clinicians to personalize treatments and surgical interventions and has therefore become an increasingly popular treatment modality in maxillofacial surgery. The current maxillofacial CAS consists of three main steps: (1) CT image reconstruction, (2) bone segmentation, and (3) surgical planning. However, each of these three steps can introduce errors that can heavily affect the treatment outcome. As a consequence, tedious and time-consuming manual post-processing is often necessary to ensure that each step is performed adequately. One way to overcome this issue is by developing and implementing neural networks (NNs) within the maxillofacial CAS workflow. These learning algorithms can be trained to perform specific tasks without the need for explicitly defined rules. In recent years, an extremely large number of novel NN approaches have been proposed for a wide variety of applications, which makes it a difficult task to keep up with all relevant developments. This study therefore aimed to summarize and review all relevant NN approaches applied for CT image reconstruction, bone segmentation, and surgical planning. After full text screening, 76 publications were identified: 32 focusing on CT image reconstruction, 33 focusing on bone segmentation and 11 focusing on surgical planning. Generally, convolutional NNs were most widely used in the identified studies, although the multilayer perceptron was most commonly applied in surgical planning tasks. Moreover, the drawbacks of current approaches and promising research avenues are discussed.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1259/dmfr.20210437
- OA Status
- green
- Cited By
- 37
- References
- 96
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4229448187
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4229448187Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1259/dmfr.20210437Digital Object Identifier
- Title
-
A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgeryWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-09Full publication date if available
- Authors
-
Jordi Minnema, Anne Ernst, Maureen van Eijnatten, Ruben Pauwels, Tymour Forouzanfar, Kees Joost Batenburg, Jan WolffList of authors in order
- Landing page
-
https://doi.org/10.1259/dmfr.20210437Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://research.tue.nl/nl/publications/e68b48f8-d76c-4f6d-91a5-79759e82252fDirect OA link when available
- Concepts
-
Workflow, Surgical planning, Segmentation, Computer science, Convolutional neural network, Artificial intelligence, Deep learning, Radiation treatment planning, Variety (cybernetics), Medical physics, Machine learning, Medicine, Radiology, Radiation therapy, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
37Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 12, 2023: 11, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
96Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4229448187 |
|---|---|
| doi | https://doi.org/10.1259/dmfr.20210437 |
| ids.doi | https://doi.org/10.1259/dmfr.20210437 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35532946 |
| ids.openalex | https://openalex.org/W4229448187 |
| fwci | 4.10690269 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000077321 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Deep Learning |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D007091 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Image Processing, Computer-Assisted |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D013515 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Surgery, Oral |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D014057 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Tomography, X-Ray Computed |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000077321 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Deep Learning |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D007091 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Image Processing, Computer-Assisted |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D016571 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Neural Networks, Computer |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D013515 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Surgery, Oral |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D014057 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Tomography, X-Ray Computed |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000077321 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Deep Learning |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006801 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Humans |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D007091 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Image Processing, Computer-Assisted |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D016571 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Neural Networks, Computer |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D013515 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Surgery, Oral |
| mesh[17].qualifier_ui | Q000379 |
| mesh[17].descriptor_ui | D014057 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | methods |
| mesh[17].descriptor_name | Tomography, X-Ray Computed |
| type | review |
| title | A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery |
| biblio.issue | 7 |
| biblio.volume | 51 |
| biblio.last_page | 20210437 |
| biblio.first_page | 20210437 |
| topics[0].id | https://openalex.org/T14510 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Medical Imaging and Analysis |
| topics[1].id | https://openalex.org/T11363 |
| topics[1].field.id | https://openalex.org/fields/35 |
| topics[1].field.display_name | Dentistry |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3504 |
| topics[1].subfield.display_name | Oral Surgery |
| topics[1].display_name | Dental Radiography and Imaging |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9987999796867371 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177212765 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7145218253135681 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[0].display_name | Workflow |
| concepts[1].id | https://openalex.org/C2779370443 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6635814309120178 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1776627 |
| concepts[1].display_name | Surgical planning |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6306862235069275 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5842517018318176 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5487180948257446 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5451627373695374 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5072612166404724 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C201645570 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4970376789569855 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q830637 |
| concepts[7].display_name | Radiation treatment planning |
| concepts[8].id | https://openalex.org/C136197465 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42774498462677 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[8].display_name | Variety (cybernetics) |
| concepts[9].id | https://openalex.org/C19527891 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4135546386241913 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[9].display_name | Medical physics |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3502703309059143 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.34062913060188293 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2347894012928009 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| concepts[13].id | https://openalex.org/C509974204 |
| concepts[13].level | 2 |
| concepts[13].score | 0.07537806034088135 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q180507 |
| concepts[13].display_name | Radiation therapy |
| concepts[14].id | https://openalex.org/C77088390 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[14].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/workflow |
| keywords[0].score | 0.7145218253135681 |
| keywords[0].display_name | Workflow |
| keywords[1].id | https://openalex.org/keywords/surgical-planning |
| keywords[1].score | 0.6635814309120178 |
| keywords[1].display_name | Surgical planning |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.6306862235069275 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5842517018318176 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5487180948257446 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5451627373695374 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5072612166404724 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/radiation-treatment-planning |
| keywords[7].score | 0.4970376789569855 |
| keywords[7].display_name | Radiation treatment planning |
| keywords[8].id | https://openalex.org/keywords/variety |
| keywords[8].score | 0.42774498462677 |
| keywords[8].display_name | Variety (cybernetics) |
| keywords[9].id | https://openalex.org/keywords/medical-physics |
| keywords[9].score | 0.4135546386241913 |
| keywords[9].display_name | Medical physics |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3502703309059143 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.34062913060188293 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/radiology |
| keywords[12].score | 0.2347894012928009 |
| keywords[12].display_name | Radiology |
| keywords[13].id | https://openalex.org/keywords/radiation-therapy |
| keywords[13].score | 0.07537806034088135 |
| keywords[13].display_name | Radiation therapy |
| language | en |
| locations[0].id | doi:10.1259/dmfr.20210437 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S32481061 |
| locations[0].source.issn | 0250-832X, 1476-542X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0250-832X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Dentomaxillofacial Radiology |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Dentomaxillofacial Radiology |
| locations[0].landing_page_url | https://doi.org/10.1259/dmfr.20210437 |
| locations[1].id | pmid:35532946 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Dento maxillo facial radiology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35532946 |
| locations[2].id | pmh:tue:oai:pure.tue.nl:publications/e68b48f8-d76c-4f6d-91a5-79759e82252f |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401843 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[2].source.host_organization | https://openalex.org/I1322597698 |
| locations[2].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[2].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/other |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Dentomaxillofacial Radiology, 51(7):20210437. British Institute of Radiology |
| locations[2].landing_page_url | https://research.tue.nl/nl/publications/e68b48f8-d76c-4f6d-91a5-79759e82252f |
| locations[3].id | pmh:cwi:oai:cwi.nl:32159 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401843 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[3].source.host_organization | https://openalex.org/I1322597698 |
| locations[3].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[3].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | info:eu-repo/semantics/article |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Dentomaxillofacial Radiology, 51(7) |
| locations[3].landing_page_url | https://ir.cwi.nl/pub/32159 |
| locations[4].id | pmh:ul:oai:scholarlypublications.universiteitleiden.nl:item_3485475 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306401843 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[4].source.host_organization | https://openalex.org/I1322597698 |
| locations[4].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[4].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | info:eu-repo/semantics/article |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Dentomaxillofacial Radiology, 51(7):20210437. BRITISH INST RADIOLOGY |
| locations[4].landing_page_url | http://hdl.handle.net/1887/3485475 |
| locations[5].id | pmh:oai:pure.tue.nl:openaire/e68b48f8-d76c-4f6d-91a5-79759e82252f |
| locations[5].is_oa | True |
| locations[5].source | |
| locations[5].license | cc-by |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | article |
| locations[5].license_id | https://openalex.org/licenses/cc-by |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Minnema, J, Ernst, A, van Eijnatten, M, Pauwels, R, Forouzanfar, T, Batenburg, K J & Wolff, J 2022, 'A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery', Dentomaxillofacial Radiology, vol. 51, no. 7, 20210437. https://doi.org/10.1259/dmfr.20210437 |
| locations[5].landing_page_url | https://research.tue.nl/en/publications/e68b48f8-d76c-4f6d-91a5-79759e82252f |
| locations[6].id | pmh:vu:oai:research.vu.nl:publications/e23d1b91-29d4-4ae1-b7ef-fc60ed59967c |
| locations[6].is_oa | True |
| locations[6].source.id | https://openalex.org/S4306401843 |
| locations[6].source.issn | |
| locations[6].source.type | repository |
| locations[6].source.is_oa | False |
| locations[6].source.issn_l | |
| locations[6].source.is_core | False |
| locations[6].source.is_in_doaj | False |
| locations[6].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[6].source.host_organization | https://openalex.org/I1322597698 |
| locations[6].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[6].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[6].license | other-oa |
| locations[6].pdf_url | |
| locations[6].version | submittedVersion |
| locations[6].raw_type | info:eu-repo/semantics/other |
| locations[6].license_id | https://openalex.org/licenses/other-oa |
| locations[6].is_accepted | False |
| locations[6].is_published | False |
| locations[6].raw_source_name | Dento maxillo facial radiology, 51(7):20210437, 1 - 16. British Institute of Radiology |
| locations[6].landing_page_url | https://research.vu.nl/en/publications/e23d1b91-29d4-4ae1-b7ef-fc60ed59967c |
| locations[7].id | pmh:vumc:oai:pure.atira.dk:publications/93bb3cf6-4cfd-48b0-9606-1cd12641d1b8 |
| locations[7].is_oa | True |
| locations[7].source.id | https://openalex.org/S4306401843 |
| locations[7].source.issn | |
| locations[7].source.type | repository |
| locations[7].source.is_oa | False |
| locations[7].source.issn_l | |
| locations[7].source.is_core | False |
| locations[7].source.is_in_doaj | False |
| locations[7].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[7].source.host_organization | https://openalex.org/I1322597698 |
| locations[7].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[7].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[7].license | other-oa |
| locations[7].pdf_url | |
| locations[7].version | submittedVersion |
| locations[7].raw_type | info:eu-repo/semantics/other |
| locations[7].license_id | https://openalex.org/licenses/other-oa |
| locations[7].is_accepted | False |
| locations[7].is_published | False |
| locations[7].raw_source_name | Dentomaxillofacial Radiology, 51(7):20210437. British Institute of Radiology |
| locations[7].landing_page_url | https://research.vumc.nl/en/publications/93bb3cf6-4cfd-48b0-9606-1cd12641d1b8 |
| locations[8].id | pmh:oai:pubmedcentral.nih.gov:9522976 |
| locations[8].is_oa | True |
| locations[8].source.id | https://openalex.org/S2764455111 |
| locations[8].source.issn | |
| locations[8].source.type | repository |
| locations[8].source.is_oa | False |
| locations[8].source.issn_l | |
| locations[8].source.is_core | False |
| locations[8].source.is_in_doaj | False |
| locations[8].source.display_name | PubMed Central |
| locations[8].source.host_organization | https://openalex.org/I1299303238 |
| locations[8].source.host_organization_name | National Institutes of Health |
| locations[8].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[8].license | other-oa |
| locations[8].pdf_url | |
| locations[8].version | submittedVersion |
| locations[8].raw_type | Text |
| locations[8].license_id | https://openalex.org/licenses/other-oa |
| locations[8].is_accepted | False |
| locations[8].is_published | False |
| locations[8].raw_source_name | Dentomaxillofac Radiol |
| locations[8].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9522976 |
| locations[9].id | pmh:oai:research.vu.nl:publications/e23d1b91-29d4-4ae1-b7ef-fc60ed59967c |
| locations[9].is_oa | True |
| locations[9].source.id | https://openalex.org/S4306401107 |
| locations[9].source.issn | |
| locations[9].source.type | repository |
| locations[9].source.is_oa | False |
| locations[9].source.issn_l | |
| locations[9].source.is_core | False |
| locations[9].source.is_in_doaj | False |
| locations[9].source.display_name | VU Research Portal |
| locations[9].source.host_organization | https://openalex.org/I865915315 |
| locations[9].source.host_organization_name | Vrije Universiteit Amsterdam |
| locations[9].source.host_organization_lineage | https://openalex.org/I865915315 |
| locations[9].license | other-oa |
| locations[9].pdf_url | |
| locations[9].version | submittedVersion |
| locations[9].raw_type | article |
| locations[9].license_id | https://openalex.org/licenses/other-oa |
| locations[9].is_accepted | False |
| locations[9].is_published | False |
| locations[9].raw_source_name | Minnema, J, Ernst, A, van Eijnatten, M, Pauwels, R, Forouzanfar, T, Batenburg, K J & Wolff, J 2022, 'A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery', Dento maxillo facial radiology, vol. 51, no. 7, 20210437, pp. 1-16. https://doi.org/10.1259/dmfr.20210437 |
| locations[9].landing_page_url | https://hdl.handle.net/1871.1/e23d1b91-29d4-4ae1-b7ef-fc60ed59967c |
| locations[10].id | pmh:oai:pure.atira.dk:openaire/213bfac5-54fb-4411-813c-e4b41332e8a0 |
| locations[10].is_oa | True |
| locations[10].source.id | https://openalex.org/S4306400216 |
| locations[10].source.issn | |
| locations[10].source.type | repository |
| locations[10].source.is_oa | False |
| locations[10].source.issn_l | |
| locations[10].source.is_core | False |
| locations[10].source.is_in_doaj | False |
| locations[10].source.display_name | Research Portal (King's College London) |
| locations[10].source.host_organization | https://openalex.org/I183935753 |
| locations[10].source.host_organization_name | King's College London |
| locations[10].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[10].license | cc-by |
| locations[10].pdf_url | |
| locations[10].version | submittedVersion |
| locations[10].raw_type | article |
| locations[10].license_id | https://openalex.org/licenses/cc-by |
| locations[10].is_accepted | False |
| locations[10].is_published | False |
| locations[10].raw_source_name | Minnema, J, Ernst, A, van Eijnatten, M, Pauwels, R, Forouzanfar, T, Batenburg, K J & Wolff, J 2022, 'A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery', Dento maxillo facial radiology, vol. 51, no. 7, 20210437, pp. 20210437. https://doi.org/10.1259/dmfr.20210437 |
| locations[10].landing_page_url | https://pure.au.dk/portal/en/publications/213bfac5-54fb-4411-813c-e4b41332e8a0 |
| locations[11].id | pmh:oai:scholarlypublications.universiteitleiden.nl:item_3485475 |
| locations[11].is_oa | True |
| locations[11].source.id | https://openalex.org/S32481061 |
| locations[11].source.issn | 0250-832X, 1476-542X |
| locations[11].source.type | journal |
| locations[11].source.is_oa | False |
| locations[11].source.issn_l | 0250-832X |
| locations[11].source.is_core | True |
| locations[11].source.is_in_doaj | False |
| locations[11].source.display_name | Dentomaxillofacial Radiology |
| locations[11].source.host_organization | https://openalex.org/P4310311648 |
| locations[11].source.host_organization_name | Oxford University Press |
| locations[11].source.host_organization_lineage | https://openalex.org/P4310311648 |
| locations[11].license | cc-by |
| locations[11].pdf_url | |
| locations[11].version | submittedVersion |
| locations[11].raw_type | Article / Letter to editor |
| locations[11].license_id | https://openalex.org/licenses/cc-by |
| locations[11].is_accepted | False |
| locations[11].is_published | False |
| locations[11].raw_source_name | Dentomaxillofacial Radiology |
| locations[11].landing_page_url | https://hdl.handle.net/1887/3485475 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5067948858 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1847-4218 |
| authorships[0].author.display_name | Jordi Minnema |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2898155008, https://openalex.org/I4210151833, https://openalex.org/I865915315 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, 3D Innovationlab, Amsterdam Movement Sciences, Amsterdam, The Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I2898155008 |
| authorships[0].institutions[0].ror | https://ror.org/04x5wnb75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2898155008 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Academic Center for Dentistry Amsterdam |
| authorships[0].institutions[1].id | https://openalex.org/I4210151833 |
| authorships[0].institutions[1].ror | https://ror.org/05grdyy37 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210151833 |
| authorships[0].institutions[1].country_code | NL |
| authorships[0].institutions[1].display_name | Amsterdam University Medical Centers |
| authorships[0].institutions[2].id | https://openalex.org/I865915315 |
| authorships[0].institutions[2].ror | https://ror.org/008xxew50 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I865915315 |
| authorships[0].institutions[2].country_code | NL |
| authorships[0].institutions[2].display_name | Vrije Universiteit Amsterdam |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jordi Minnema |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, 3D Innovationlab, Amsterdam Movement Sciences, Amsterdam, The Netherlands |
| authorships[1].author.id | https://openalex.org/A5044574152 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1420-1693 |
| authorships[1].author.display_name | Anne Ernst |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I159176309, https://openalex.org/I4210108711 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Medical Systems Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I4210108711 |
| authorships[1].institutions[0].ror | https://ror.org/01zgy1s35 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I159176309, https://openalex.org/I4210108711 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | University Medical Center Hamburg-Eppendorf |
| authorships[1].institutions[1].id | https://openalex.org/I159176309 |
| authorships[1].institutions[1].ror | https://ror.org/00g30e956 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I159176309 |
| authorships[1].institutions[1].country_code | DE |
| authorships[1].institutions[1].display_name | Universität Hamburg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anne Ernst |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Medical Systems Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany |
| authorships[2].author.id | https://openalex.org/A5035413133 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9208-283X |
| authorships[2].author.display_name | Maureen van Eijnatten |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I83019370 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Eindhoven University of Technology, Medical Image Analysis Group, Eindhoven, The Netherlands |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I1341640284 |
| authorships[2].affiliations[1].raw_affiliation_string | Computational imaging group, Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I1341640284 |
| authorships[2].institutions[0].ror | https://ror.org/00x7ekv49 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1341640284, https://openalex.org/I2800991832 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Centrum Wiskunde & Informatica |
| authorships[2].institutions[1].id | https://openalex.org/I83019370 |
| authorships[2].institutions[1].ror | https://ror.org/02c2kyt77 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I83019370 |
| authorships[2].institutions[1].country_code | NL |
| authorships[2].institutions[1].display_name | Eindhoven University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Maureen van Eijnatten |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Computational imaging group, Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands, Department of Biomedical Engineering, Eindhoven University of Technology, Medical Image Analysis Group, Eindhoven, The Netherlands |
| authorships[3].author.id | https://openalex.org/A5070268822 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9462-7546 |
| authorships[3].author.display_name | Ruben Pauwels |
| authorships[3].countries | DK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204337017 |
| authorships[3].affiliations[0].raw_affiliation_string | Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark |
| authorships[3].institutions[0].id | https://openalex.org/I204337017 |
| authorships[3].institutions[0].ror | https://ror.org/01aj84f44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204337017 |
| authorships[3].institutions[0].country_code | DK |
| authorships[3].institutions[0].display_name | Aarhus University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ruben Pauwels |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark |
| authorships[4].author.id | https://openalex.org/A5081549181 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tymour Forouzanfar |
| authorships[4].countries | NL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2898155008, https://openalex.org/I4210151833, https://openalex.org/I865915315 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, 3D Innovationlab, Amsterdam Movement Sciences, Amsterdam, The Netherlands |
| authorships[4].institutions[0].id | https://openalex.org/I2898155008 |
| authorships[4].institutions[0].ror | https://ror.org/04x5wnb75 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2898155008 |
| authorships[4].institutions[0].country_code | NL |
| authorships[4].institutions[0].display_name | Academic Center for Dentistry Amsterdam |
| authorships[4].institutions[1].id | https://openalex.org/I4210151833 |
| authorships[4].institutions[1].ror | https://ror.org/05grdyy37 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210151833 |
| authorships[4].institutions[1].country_code | NL |
| authorships[4].institutions[1].display_name | Amsterdam University Medical Centers |
| authorships[4].institutions[2].id | https://openalex.org/I865915315 |
| authorships[4].institutions[2].ror | https://ror.org/008xxew50 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I865915315 |
| authorships[4].institutions[2].country_code | NL |
| authorships[4].institutions[2].display_name | Vrije Universiteit Amsterdam |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tymour Forouzanfar |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, 3D Innovationlab, Amsterdam Movement Sciences, Amsterdam, The Netherlands |
| authorships[5].author.id | https://openalex.org/A5071026235 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3154-8576 |
| authorships[5].author.display_name | Kees Joost Batenburg |
| authorships[5].countries | NL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1341640284 |
| authorships[5].affiliations[0].raw_affiliation_string | Computational imaging group, Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I121797337 |
| authorships[5].affiliations[1].raw_affiliation_string | Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands |
| authorships[5].institutions[0].id | https://openalex.org/I1341640284 |
| authorships[5].institutions[0].ror | https://ror.org/00x7ekv49 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1341640284, https://openalex.org/I2800991832 |
| authorships[5].institutions[0].country_code | NL |
| authorships[5].institutions[0].display_name | Centrum Wiskunde & Informatica |
| authorships[5].institutions[1].id | https://openalex.org/I121797337 |
| authorships[5].institutions[1].ror | https://ror.org/027bh9e22 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I121797337 |
| authorships[5].institutions[1].country_code | NL |
| authorships[5].institutions[1].display_name | Leiden University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kees Joost Batenburg |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Computational imaging group, Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands |
| authorships[6].author.id | https://openalex.org/A5059544055 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6269-4373 |
| authorships[6].author.display_name | Jan Wolff |
| authorships[6].countries | DK |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I204337017 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard, Aarhus, Denmark |
| authorships[6].institutions[0].id | https://openalex.org/I204337017 |
| authorships[6].institutions[0].ror | https://ror.org/01aj84f44 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I204337017 |
| authorships[6].institutions[0].country_code | DK |
| authorships[6].institutions[0].display_name | Aarhus University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jan Wolff |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard, Aarhus, Denmark |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://research.tue.nl/nl/publications/e68b48f8-d76c-4f6d-91a5-79759e82252f |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14510 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Medical Imaging and Analysis |
| related_works | https://openalex.org/W1981780420, https://openalex.org/W2182707996, https://openalex.org/W4226493464, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W2132086612, https://openalex.org/W2467923256, https://openalex.org/W2330220355, https://openalex.org/W2192255940 |
| cited_by_count | 37 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 12 |
| best_oa_location.id | pmh:tue:oai:pure.tue.nl:publications/e68b48f8-d76c-4f6d-91a5-79759e82252f |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401843 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Data Archiving and Networked Services (DANS) |
| best_oa_location.source.host_organization | https://openalex.org/I1322597698 |
| best_oa_location.source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1322597698 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/other |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Dentomaxillofacial Radiology, 51(7):20210437. British Institute of Radiology |
| best_oa_location.landing_page_url | https://research.tue.nl/nl/publications/e68b48f8-d76c-4f6d-91a5-79759e82252f |
| primary_location.id | doi:10.1259/dmfr.20210437 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S32481061 |
| primary_location.source.issn | 0250-832X, 1476-542X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0250-832X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Dentomaxillofacial Radiology |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Dentomaxillofacial Radiology |
| primary_location.landing_page_url | https://doi.org/10.1259/dmfr.20210437 |
| publication_date | 2022-05-09 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2029147774, https://openalex.org/W2521326608, https://openalex.org/W2294009851, https://openalex.org/W2971102452, https://openalex.org/W1869960814, https://openalex.org/W2766463156, https://openalex.org/W2592929672, https://openalex.org/W3108320661, https://openalex.org/W2905810301, https://openalex.org/W2323469482, https://openalex.org/W2011588076, https://openalex.org/W2163548178, https://openalex.org/W2023391823, https://openalex.org/W72630920, https://openalex.org/W1515187149, https://openalex.org/W2149518072, https://openalex.org/W64207787, https://openalex.org/W2525884435, https://openalex.org/W2607406448, https://openalex.org/W2738743584, https://openalex.org/W2793419304, https://openalex.org/W2751669091, https://openalex.org/W2963392702, https://openalex.org/W2791154958, https://openalex.org/W2803086176, https://openalex.org/W2930377639, https://openalex.org/W2947117330, https://openalex.org/W2911459672, https://openalex.org/W2898099302, https://openalex.org/W2972922788, https://openalex.org/W2918517045, https://openalex.org/W2995534778, https://openalex.org/W3016171539, https://openalex.org/W2997151107, https://openalex.org/W3011771465, https://openalex.org/W3110610984, https://openalex.org/W3109288119, https://openalex.org/W3096461526, https://openalex.org/W1997958877, https://openalex.org/W2050490309, https://openalex.org/W2908957122, https://openalex.org/W2560725027, https://openalex.org/W2757454662, https://openalex.org/W2788866656, https://openalex.org/W2897772195, https://openalex.org/W2906395823, https://openalex.org/W2809352434, https://openalex.org/W2896642010, https://openalex.org/W2921838238, https://openalex.org/W2990746102, https://openalex.org/W2901462650, https://openalex.org/W2962644157, https://openalex.org/W2901559346, https://openalex.org/W2940594171, https://openalex.org/W2896145365, https://openalex.org/W2914444914, https://openalex.org/W2908582544, https://openalex.org/W3013091405, https://openalex.org/W3007034888, https://openalex.org/W2999900920, https://openalex.org/W2993184403, https://openalex.org/W3017663222, https://openalex.org/W3006011959, https://openalex.org/W2990306149, https://openalex.org/W2902938424, https://openalex.org/W3021337333, https://openalex.org/W2136307054, https://openalex.org/W2063665520, https://openalex.org/W2007951540, https://openalex.org/W2023669923, https://openalex.org/W2050374468, https://openalex.org/W607296821, https://openalex.org/W2213139466, https://openalex.org/W2791243997, https://openalex.org/W2896016793, https://openalex.org/W3037809234, https://openalex.org/W3090169043, https://openalex.org/W1901129140, https://openalex.org/W2963881378, https://openalex.org/W2776265614, https://openalex.org/W2194775991, https://openalex.org/W1976385767, https://openalex.org/W2953786841, https://openalex.org/W2927574169, https://openalex.org/W2529203629, https://openalex.org/W2964118901, https://openalex.org/W2891229546, https://openalex.org/W3101765447, https://openalex.org/W3003864320, https://openalex.org/W3103372211, https://openalex.org/W3123850306, https://openalex.org/W2978352565, https://openalex.org/W3040793855, https://openalex.org/W3103586216, https://openalex.org/W3042927485, https://openalex.org/W3101464159 |
| referenced_works_count | 96 |
| abstract_inverted_index.a | 60, 129, 137 |
| abstract_inverted_index.11 | 189 |
| abstract_inverted_index.32 | 177 |
| abstract_inverted_index.33 | 183 |
| abstract_inverted_index.76 | 173 |
| abstract_inverted_index.As | 59 |
| abstract_inverted_index.CT | 33, 161, 180 |
| abstract_inverted_index.In | 114 |
| abstract_inverted_index.NN | 123, 157 |
| abstract_inverted_index.an | 15, 117 |
| abstract_inverted_index.be | 101 |
| abstract_inverted_index.by | 85 |
| abstract_inverted_index.in | 20, 201, 213 |
| abstract_inverted_index.is | 67, 75, 84 |
| abstract_inverted_index.it | 136 |
| abstract_inverted_index.of | 28, 45, 121, 132, 220 |
| abstract_inverted_index.on | 179, 185, 191 |
| abstract_inverted_index.to | 5, 70, 80, 103, 140, 151 |
| abstract_inverted_index.up | 142 |
| abstract_inverted_index.(1) | 32 |
| abstract_inverted_index.(2) | 36 |
| abstract_inverted_index.(3) | 40 |
| abstract_inverted_index.CAS | 26, 95 |
| abstract_inverted_index.NNs | 196 |
| abstract_inverted_index.One | 78 |
| abstract_inverted_index.The | 23 |
| abstract_inverted_index.all | 144, 155 |
| abstract_inverted_index.and | 8, 11, 39, 63, 87, 153, 166, 188, 223 |
| abstract_inverted_index.are | 227 |
| abstract_inverted_index.can | 49, 53, 100 |
| abstract_inverted_index.for | 110, 128, 160 |
| abstract_inverted_index.has | 12 |
| abstract_inverted_index.the | 56, 93, 108, 202, 206, 218 |
| abstract_inverted_index.was | 209 |
| abstract_inverted_index.way | 79 |
| abstract_inverted_index.This | 147 |
| abstract_inverted_index.been | 126 |
| abstract_inverted_index.bone | 37, 164, 186 |
| abstract_inverted_index.each | 44, 73 |
| abstract_inverted_index.full | 170 |
| abstract_inverted_index.have | 125 |
| abstract_inverted_index.keep | 141 |
| abstract_inverted_index.main | 30 |
| abstract_inverted_index.most | 198, 210 |
| abstract_inverted_index.need | 109 |
| abstract_inverted_index.step | 74 |
| abstract_inverted_index.task | 139 |
| abstract_inverted_index.text | 171 |
| abstract_inverted_index.that | 52, 72 |
| abstract_inverted_index.this | 82 |
| abstract_inverted_index.used | 200 |
| abstract_inverted_index.were | 175, 197 |
| abstract_inverted_index.wide | 130 |
| abstract_inverted_index.with | 143 |
| abstract_inverted_index.(CAS) | 2 |
| abstract_inverted_index.(NNs) | 91 |
| abstract_inverted_index.After | 169 |
| abstract_inverted_index.These | 97 |
| abstract_inverted_index.aimed | 150 |
| abstract_inverted_index.image | 34, 162, 181 |
| abstract_inverted_index.issue | 83 |
| abstract_inverted_index.large | 119 |
| abstract_inverted_index.makes | 135 |
| abstract_inverted_index.novel | 122 |
| abstract_inverted_index.often | 68 |
| abstract_inverted_index.steps | 48 |
| abstract_inverted_index.study | 148 |
| abstract_inverted_index.tasks | 106 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.three | 29, 47 |
| abstract_inverted_index.which | 134 |
| abstract_inverted_index.affect | 55 |
| abstract_inverted_index.allows | 3 |
| abstract_inverted_index.become | 14 |
| abstract_inverted_index.ensure | 71 |
| abstract_inverted_index.errors | 51 |
| abstract_inverted_index.manual | 65 |
| abstract_inverted_index.neural | 89 |
| abstract_inverted_index.number | 120 |
| abstract_inverted_index.recent | 115 |
| abstract_inverted_index.review | 154 |
| abstract_inverted_index.rules. | 113 |
| abstract_inverted_index.steps: | 31 |
| abstract_inverted_index.tasks. | 216 |
| abstract_inverted_index.widely | 199 |
| abstract_inverted_index.within | 92 |
| abstract_inverted_index.years, | 116 |
| abstract_inverted_index.applied | 159, 212 |
| abstract_inverted_index.avenues | 226 |
| abstract_inverted_index.current | 24, 221 |
| abstract_inverted_index.defined | 112 |
| abstract_inverted_index.heavily | 54 |
| abstract_inverted_index.perform | 104 |
| abstract_inverted_index.popular | 17 |
| abstract_inverted_index.surgery | 1 |
| abstract_inverted_index.tedious | 62 |
| abstract_inverted_index.trained | 102 |
| abstract_inverted_index.variety | 131 |
| abstract_inverted_index.without | 107 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.although | 205 |
| abstract_inverted_index.commonly | 211 |
| abstract_inverted_index.consists | 27 |
| abstract_inverted_index.focusing | 178, 184, 190 |
| abstract_inverted_index.learning | 98 |
| abstract_inverted_index.modality | 19 |
| abstract_inverted_index.networks | 90 |
| abstract_inverted_index.outcome. | 58 |
| abstract_inverted_index.overcome | 81 |
| abstract_inverted_index.planning | 215 |
| abstract_inverted_index.proposed | 127 |
| abstract_inverted_index.relevant | 145, 156 |
| abstract_inverted_index.research | 225 |
| abstract_inverted_index.specific | 105 |
| abstract_inverted_index.studies, | 204 |
| abstract_inverted_index.surgery. | 22 |
| abstract_inverted_index.surgical | 9, 41, 167, 192, 214 |
| abstract_inverted_index.Moreover, | 217 |
| abstract_inverted_index.difficult | 138 |
| abstract_inverted_index.drawbacks | 219 |
| abstract_inverted_index.extremely | 118 |
| abstract_inverted_index.introduce | 50 |
| abstract_inverted_index.necessary | 69 |
| abstract_inverted_index.performed | 76 |
| abstract_inverted_index.planning. | 42, 168, 193 |
| abstract_inverted_index.promising | 224 |
| abstract_inverted_index.summarize | 152 |
| abstract_inverted_index.therefore | 13, 149 |
| abstract_inverted_index.treatment | 18, 57 |
| abstract_inverted_index.workflow. | 96 |
| abstract_inverted_index.Generally, | 194 |
| abstract_inverted_index.algorithms | 99 |
| abstract_inverted_index.approaches | 124, 158, 222 |
| abstract_inverted_index.clinicians | 4 |
| abstract_inverted_index.developing | 86 |
| abstract_inverted_index.discussed. | 228 |
| abstract_inverted_index.explicitly | 111 |
| abstract_inverted_index.identified | 203 |
| abstract_inverted_index.multilayer | 207 |
| abstract_inverted_index.perceptron | 208 |
| abstract_inverted_index.screening, | 172 |
| abstract_inverted_index.treatments | 7 |
| abstract_inverted_index.adequately. | 77 |
| abstract_inverted_index.identified: | 176 |
| abstract_inverted_index.personalize | 6 |
| abstract_inverted_index.consequence, | 61 |
| abstract_inverted_index.implementing | 88 |
| abstract_inverted_index.increasingly | 16 |
| abstract_inverted_index.publications | 174 |
| abstract_inverted_index.segmentation | 187 |
| abstract_inverted_index.applications, | 133 |
| abstract_inverted_index.convolutional | 195 |
| abstract_inverted_index.developments. | 146 |
| abstract_inverted_index.interventions | 10 |
| abstract_inverted_index.maxillofacial | 21, 25, 94 |
| abstract_inverted_index.segmentation, | 38, 165 |
| abstract_inverted_index.time-consuming | 64 |
| abstract_inverted_index.post-processing | 66 |
| abstract_inverted_index.reconstruction, | 35, 163, 182 |
| abstract_inverted_index.Computer-assisted | 0 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.92505552 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |