A Review on Trajectory Datasets on Advanced Driver Assistance System Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.05009
This paper presents a comprehensive review of trajectory data of Advanced Driver Assistance System equipped-vehicle, with the aim of precisely model of Autonomous Vehicles (AVs) behavior. This study emphasizes the importance of trajectory data in the development of AV models, especially in car-following scenarios. We introduce and evaluate several datasets: the OpenACC Dataset, the Connected & Autonomous Transportation Systems Laboratory Open Dataset, the Vanderbilt ACC Dataset, the Central Ohio Dataset, and the Waymo Open Dataset. Each dataset offers unique insights into AV behaviors, yet they share common challenges in terms of data availability, processing, and standardization. After a series of data cleaning, outlier removal and statistical analysis, this paper transforms datasets of varied formats into a uniform standard, thereby improving their applicability for modeling AV car-following behavior. Key contributions of this study include: 1. the transformation of all datasets into a unified standard format, enhancing their utility for broad research applications; 2. a comparative analysis of these datasets, highlighting their distinct characteristics and implications for car-following model development; 3. the provision of guidelines for future data collection projects, along with the open-source release of all processed data and code for use by the research community.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.05009
- https://arxiv.org/pdf/2402.05009
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391670373
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391670373Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.05009Digital Object Identifier
- Title
-
A Review on Trajectory Datasets on Advanced Driver Assistance SystemWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-07Full publication date if available
- Authors
-
Hang Zhou, Ke Ma, Xiaopeng LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.05009Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.05009Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.05009Direct OA link when available
- Concepts
-
Trajectory, Computer science, Advanced driver assistance systems, Artificial intelligence, Physics, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391670373 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.05009 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.05009 |
| ids.openalex | https://openalex.org/W4391670373 |
| fwci | 0.53997443 |
| type | review |
| title | A Review on Trajectory Datasets on Advanced Driver Assistance System |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9765999913215637 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T11099 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9089000225067139 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Autonomous Vehicle Technology and Safety |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C13662910 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8506541848182678 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[0].display_name | Trajectory |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5209532976150513 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C87833898 |
| concepts[2].level | 2 |
| concepts[2].score | 0.44788098335266113 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1060280 |
| concepts[2].display_name | Advanced driver assistance systems |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3119991421699524 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.12387976050376892 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C1276947 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[5].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/trajectory |
| keywords[0].score | 0.8506541848182678 |
| keywords[0].display_name | Trajectory |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5209532976150513 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/advanced-driver-assistance-systems |
| keywords[2].score | 0.44788098335266113 |
| keywords[2].display_name | Advanced driver assistance systems |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3119991421699524 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.12387976050376892 |
| keywords[4].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.05009 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.05009 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.05009 |
| locations[1].id | doi:10.48550/arxiv.2402.05009 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.05009 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101834659 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1411-8494 |
| authorships[0].author.display_name | Hang Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhou, Hang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103089671 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9184-3422 |
| authorships[1].author.display_name | Ke Ma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ma, Ke |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067715323 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4161-2727 |
| authorships[2].author.display_name | Xiaopeng Li |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Li, Xiaopeng |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.05009 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Review on Trajectory Datasets on Advanced Driver Assistance System |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9765999913215637 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W1941703695, https://openalex.org/W4323768008, https://openalex.org/W3131574667, https://openalex.org/W2382290278, https://openalex.org/W2478288626 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.05009 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.05009 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.05009 |
| primary_location.id | pmh:oai:arXiv.org:2402.05009 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.05009 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.05009 |
| publication_date | 2024-02-07 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 97, 115, 140, 152 |
| abstract_inverted_index.1. | 133 |
| abstract_inverted_index.2. | 151 |
| abstract_inverted_index.3. | 168 |
| abstract_inverted_index.AV | 38, 81, 124 |
| abstract_inverted_index.We | 44 |
| abstract_inverted_index.by | 191 |
| abstract_inverted_index.in | 34, 41, 88 |
| abstract_inverted_index.of | 6, 9, 18, 21, 31, 37, 90, 99, 111, 129, 136, 155, 171, 183 |
| abstract_inverted_index.ACC | 64 |
| abstract_inverted_index.Key | 127 |
| abstract_inverted_index.aim | 17 |
| abstract_inverted_index.all | 137, 184 |
| abstract_inverted_index.and | 46, 70, 94, 104, 162, 187 |
| abstract_inverted_index.for | 122, 147, 164, 173, 189 |
| abstract_inverted_index.the | 16, 29, 35, 50, 53, 62, 66, 71, 134, 169, 180, 192 |
| abstract_inverted_index.use | 190 |
| abstract_inverted_index.yet | 83 |
| abstract_inverted_index.Each | 75 |
| abstract_inverted_index.Ohio | 68 |
| abstract_inverted_index.Open | 60, 73 |
| abstract_inverted_index.This | 0, 26 |
| abstract_inverted_index.code | 188 |
| abstract_inverted_index.data | 8, 33, 91, 100, 175, 186 |
| abstract_inverted_index.into | 80, 114, 139 |
| abstract_inverted_index.they | 84 |
| abstract_inverted_index.this | 107, 130 |
| abstract_inverted_index.with | 15, 179 |
| abstract_inverted_index.& | 55 |
| abstract_inverted_index.(AVs) | 24 |
| abstract_inverted_index.After | 96 |
| abstract_inverted_index.Waymo | 72 |
| abstract_inverted_index.along | 178 |
| abstract_inverted_index.broad | 148 |
| abstract_inverted_index.model | 20, 166 |
| abstract_inverted_index.paper | 1, 108 |
| abstract_inverted_index.share | 85 |
| abstract_inverted_index.study | 27, 131 |
| abstract_inverted_index.terms | 89 |
| abstract_inverted_index.their | 120, 145, 159 |
| abstract_inverted_index.these | 156 |
| abstract_inverted_index.Driver | 11 |
| abstract_inverted_index.System | 13 |
| abstract_inverted_index.common | 86 |
| abstract_inverted_index.future | 174 |
| abstract_inverted_index.offers | 77 |
| abstract_inverted_index.review | 5 |
| abstract_inverted_index.series | 98 |
| abstract_inverted_index.unique | 78 |
| abstract_inverted_index.varied | 112 |
| abstract_inverted_index.Central | 67 |
| abstract_inverted_index.OpenACC | 51 |
| abstract_inverted_index.Systems | 58 |
| abstract_inverted_index.dataset | 76 |
| abstract_inverted_index.format, | 143 |
| abstract_inverted_index.formats | 113 |
| abstract_inverted_index.models, | 39 |
| abstract_inverted_index.outlier | 102 |
| abstract_inverted_index.release | 182 |
| abstract_inverted_index.removal | 103 |
| abstract_inverted_index.several | 48 |
| abstract_inverted_index.thereby | 118 |
| abstract_inverted_index.unified | 141 |
| abstract_inverted_index.uniform | 116 |
| abstract_inverted_index.utility | 146 |
| abstract_inverted_index.Advanced | 10 |
| abstract_inverted_index.Dataset, | 52, 61, 65, 69 |
| abstract_inverted_index.Dataset. | 74 |
| abstract_inverted_index.Vehicles | 23 |
| abstract_inverted_index.analysis | 154 |
| abstract_inverted_index.datasets | 110, 138 |
| abstract_inverted_index.distinct | 160 |
| abstract_inverted_index.evaluate | 47 |
| abstract_inverted_index.include: | 132 |
| abstract_inverted_index.insights | 79 |
| abstract_inverted_index.modeling | 123 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.research | 149, 193 |
| abstract_inverted_index.standard | 142 |
| abstract_inverted_index.Connected | 54 |
| abstract_inverted_index.analysis, | 106 |
| abstract_inverted_index.behavior. | 25, 126 |
| abstract_inverted_index.cleaning, | 101 |
| abstract_inverted_index.datasets, | 157 |
| abstract_inverted_index.datasets: | 49 |
| abstract_inverted_index.enhancing | 144 |
| abstract_inverted_index.improving | 119 |
| abstract_inverted_index.introduce | 45 |
| abstract_inverted_index.precisely | 19 |
| abstract_inverted_index.processed | 185 |
| abstract_inverted_index.projects, | 177 |
| abstract_inverted_index.provision | 170 |
| abstract_inverted_index.standard, | 117 |
| abstract_inverted_index.Assistance | 12 |
| abstract_inverted_index.Autonomous | 22, 56 |
| abstract_inverted_index.Laboratory | 59 |
| abstract_inverted_index.Vanderbilt | 63 |
| abstract_inverted_index.behaviors, | 82 |
| abstract_inverted_index.challenges | 87 |
| abstract_inverted_index.collection | 176 |
| abstract_inverted_index.community. | 194 |
| abstract_inverted_index.emphasizes | 28 |
| abstract_inverted_index.especially | 40 |
| abstract_inverted_index.guidelines | 172 |
| abstract_inverted_index.importance | 30 |
| abstract_inverted_index.scenarios. | 43 |
| abstract_inverted_index.trajectory | 7, 32 |
| abstract_inverted_index.transforms | 109 |
| abstract_inverted_index.comparative | 153 |
| abstract_inverted_index.development | 36 |
| abstract_inverted_index.open-source | 181 |
| abstract_inverted_index.processing, | 93 |
| abstract_inverted_index.statistical | 105 |
| abstract_inverted_index.development; | 167 |
| abstract_inverted_index.highlighting | 158 |
| abstract_inverted_index.implications | 163 |
| abstract_inverted_index.applicability | 121 |
| abstract_inverted_index.applications; | 150 |
| abstract_inverted_index.availability, | 92 |
| abstract_inverted_index.car-following | 42, 125, 165 |
| abstract_inverted_index.comprehensive | 4 |
| abstract_inverted_index.contributions | 128 |
| abstract_inverted_index.Transportation | 57 |
| abstract_inverted_index.transformation | 135 |
| abstract_inverted_index.characteristics | 161 |
| abstract_inverted_index.standardization. | 95 |
| abstract_inverted_index.equipped-vehicle, | 14 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.54178265 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |