A Robust Bayesian Approach for Causal Inference Problems Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-031-45608-4_27
Causal inference concerns finding the treatment effect on subjects along with causal links between the variables and the outcome. However, the underlying heterogeneity between subjects makes the problem practically unsolvable. Additionally, we often need to find a subset of explanatory variables to understand the treatment effect. Currently, variable selection methods tend to maximise the predictive performance of the underlying model, and unfortunately, under limited data, the predictive performance is hard to assess, leading to harmful consequences. To address these issues, in this paper, we consider a robust Bayesian analysis which accounts for abstention in selecting explanatory variables in the high dimensional regression model. To achieve that, we consider a set of spike and slab priors through prior elicitation to obtain a set of posteriors for both the treatment and outcome model. We are specifically interested in the sensitivity of the treatment effect in high dimensional causal inference as well as identifying confounder variables. However, confounder selection can be deceptive in this setting, especially when a predictor is strongly associated with either the treatment or the outcome. To avoid that we apply a post-hoc selection scheme, attaining a smaller set of confounders as well as separate sets of variables which are only related to treatment or outcome model. Finally, we illustrate our method to show its applicability.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.1007/978-3-031-45608-4_27
- OA Status
- gold
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388795553
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388795553Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/978-3-031-45608-4_27Digital Object Identifier
- Title
-
A Robust Bayesian Approach for Causal Inference ProblemsWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-18Full publication date if available
- Authors
-
Tathagata Basu, Matthias C. M. Troffaes, Jochen EinbeckList of authors in order
- Landing page
-
https://doi.org/10.1007/978-3-031-45608-4_27Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://durham-repository.worktribe.com/output/3106504Direct OA link when available
- Concepts
-
Causal inference, Outcome (game theory), Computer science, Prior probability, Bayesian inference, Inference, Bayesian probability, Causal model, Econometrics, Machine learning, Set (abstract data type), Confounding, Artificial intelligence, Statistics, Mathematics, Programming language, Mathematical economicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388795553 |
|---|---|
| doi | https://doi.org/10.1007/978-3-031-45608-4_27 |
| ids.doi | https://doi.org/10.1007/978-3-031-45608-4_27 |
| ids.openalex | https://openalex.org/W4388795553 |
| fwci | 0.0 |
| type | book-chapter |
| title | A Robust Bayesian Approach for Causal Inference Problems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 371 |
| biblio.first_page | 359 |
| topics[0].id | https://openalex.org/T10845 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Causal Inference Techniques |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9968000054359436 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list.value | 5000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 5392 |
| apc_paid.value | 5000 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 5392 |
| concepts[0].id | https://openalex.org/C158600405 |
| concepts[0].level | 2 |
| concepts[0].score | 0.742536187171936 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[0].display_name | Causal inference |
| concepts[1].id | https://openalex.org/C148220186 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6972061991691589 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7111912 |
| concepts[1].display_name | Outcome (game theory) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6793118715286255 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C177769412 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6297374367713928 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[3].display_name | Prior probability |
| concepts[4].id | https://openalex.org/C160234255 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5417559146881104 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[4].display_name | Bayesian inference |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5212031602859497 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C107673813 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5132207870483398 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[6].display_name | Bayesian probability |
| concepts[7].id | https://openalex.org/C11671645 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5093299150466919 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5054567 |
| concepts[7].display_name | Causal model |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4876162111759186 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4796741008758545 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C177264268 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47078078985214233 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[10].display_name | Set (abstract data type) |
| concepts[11].id | https://openalex.org/C77350462 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4690670669078827 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1125472 |
| concepts[11].display_name | Confounding |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4169631004333496 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.24007898569107056 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.19598284363746643 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C144237770 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q747534 |
| concepts[16].display_name | Mathematical economics |
| keywords[0].id | https://openalex.org/keywords/causal-inference |
| keywords[0].score | 0.742536187171936 |
| keywords[0].display_name | Causal inference |
| keywords[1].id | https://openalex.org/keywords/outcome |
| keywords[1].score | 0.6972061991691589 |
| keywords[1].display_name | Outcome (game theory) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6793118715286255 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/prior-probability |
| keywords[3].score | 0.6297374367713928 |
| keywords[3].display_name | Prior probability |
| keywords[4].id | https://openalex.org/keywords/bayesian-inference |
| keywords[4].score | 0.5417559146881104 |
| keywords[4].display_name | Bayesian inference |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.5212031602859497 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/bayesian-probability |
| keywords[6].score | 0.5132207870483398 |
| keywords[6].display_name | Bayesian probability |
| keywords[7].id | https://openalex.org/keywords/causal-model |
| keywords[7].score | 0.5093299150466919 |
| keywords[7].display_name | Causal model |
| keywords[8].id | https://openalex.org/keywords/econometrics |
| keywords[8].score | 0.4876162111759186 |
| keywords[8].display_name | Econometrics |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4796741008758545 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/set |
| keywords[10].score | 0.47078078985214233 |
| keywords[10].display_name | Set (abstract data type) |
| keywords[11].id | https://openalex.org/keywords/confounding |
| keywords[11].score | 0.4690670669078827 |
| keywords[11].display_name | Confounding |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.4169631004333496 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.24007898569107056 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.19598284363746643 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1007/978-3-031-45608-4_27 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S106296714 |
| locations[0].source.issn | 0302-9743, 1611-3349 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0302-9743 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Lecture notes in computer science |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Lecture Notes in Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1007/978-3-031-45608-4_27 |
| locations[1].id | pmh:oai:durham-repository.worktribe.com:3106504 |
| locations[1].is_oa | True |
| locations[1].source | |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | acceptedVersion |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://durham-repository.worktribe.com/output/3106504 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5065361277 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6851-154X |
| authorships[0].author.display_name | Tathagata Basu |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I181647926 |
| authorships[0].affiliations[0].raw_affiliation_string | Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK |
| authorships[0].institutions[0].id | https://openalex.org/I181647926 |
| authorships[0].institutions[0].ror | https://ror.org/00n3w3b69 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I181647926 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Strathclyde |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tathagata Basu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK |
| authorships[1].author.id | https://openalex.org/A5086689994 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1294-600X |
| authorships[1].author.display_name | Matthias C. M. Troffaes |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I190082696 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematical Sciences, Durham University, Durham, UK |
| authorships[1].institutions[0].id | https://openalex.org/I190082696 |
| authorships[1].institutions[0].ror | https://ror.org/01v29qb04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I190082696 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Durham University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Matthias C. M. Troffaes |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematical Sciences, Durham University, Durham, UK |
| authorships[2].author.id | https://openalex.org/A5043682721 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9457-2020 |
| authorships[2].author.display_name | Jochen Einbeck |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I190082696 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematical Sciences, Durham University, Durham, UK |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I190082696 |
| authorships[2].affiliations[1].raw_affiliation_string | Durham Research Methods Centre, Durham, UK |
| authorships[2].institutions[0].id | https://openalex.org/I190082696 |
| authorships[2].institutions[0].ror | https://ror.org/01v29qb04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I190082696 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Durham University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jochen Einbeck |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematical Sciences, Durham University, Durham, UK, Durham Research Methods Centre, Durham, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://durham-repository.worktribe.com/output/3106504 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Robust Bayesian Approach for Causal Inference Problems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10845 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Causal Inference Techniques |
| related_works | https://openalex.org/W3023719900, https://openalex.org/W4287798354, https://openalex.org/W3035083705, https://openalex.org/W2030287811, https://openalex.org/W4386534229, https://openalex.org/W3002087755, https://openalex.org/W4386150491, https://openalex.org/W3080342542, https://openalex.org/W2806152055, https://openalex.org/W4301105698 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:durham-repository.worktribe.com:3106504 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | acceptedVersion |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://durham-repository.worktribe.com/output/3106504 |
| primary_location.id | doi:10.1007/978-3-031-45608-4_27 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S106296714 |
| primary_location.source.issn | 0302-9743, 1611-3349 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0302-9743 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Lecture notes in computer science |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Lecture Notes in Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1007/978-3-031-45608-4_27 |
| publication_date | 2023-11-18 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2150291618, https://openalex.org/W2082299845, https://openalex.org/W4234712938, https://openalex.org/W2103614491, https://openalex.org/W2155163959, https://openalex.org/W2064790857, https://openalex.org/W2145455227, https://openalex.org/W2163988630, https://openalex.org/W2095193497, https://openalex.org/W3122415203, https://openalex.org/W2999434864, https://openalex.org/W2067316154, https://openalex.org/W4224434675, https://openalex.org/W1969415786, https://openalex.org/W2082633919, https://openalex.org/W2013718670, https://openalex.org/W1507344949, https://openalex.org/W2108306139, https://openalex.org/W2020925091, https://openalex.org/W1963986132, https://openalex.org/W3100253669 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 36, 85, 108, 120, 164, 181, 186 |
| abstract_inverted_index.To | 76, 103, 176 |
| abstract_inverted_index.We | 131 |
| abstract_inverted_index.as | 147, 149, 191, 193 |
| abstract_inverted_index.be | 157 |
| abstract_inverted_index.in | 80, 93, 97, 135, 142, 159 |
| abstract_inverted_index.is | 68, 166 |
| abstract_inverted_index.of | 38, 56, 110, 122, 138, 189, 196 |
| abstract_inverted_index.on | 7 |
| abstract_inverted_index.or | 173, 204 |
| abstract_inverted_index.to | 34, 41, 51, 70, 73, 118, 202, 212 |
| abstract_inverted_index.we | 31, 83, 106, 179, 208 |
| abstract_inverted_index.and | 16, 60, 112, 128 |
| abstract_inverted_index.are | 132, 199 |
| abstract_inverted_index.can | 156 |
| abstract_inverted_index.for | 91, 124 |
| abstract_inverted_index.its | 214 |
| abstract_inverted_index.our | 210 |
| abstract_inverted_index.set | 109, 121, 188 |
| abstract_inverted_index.the | 4, 14, 17, 20, 26, 43, 53, 57, 65, 98, 126, 136, 139, 171, 174 |
| abstract_inverted_index.both | 125 |
| abstract_inverted_index.find | 35 |
| abstract_inverted_index.hard | 69 |
| abstract_inverted_index.high | 99, 143 |
| abstract_inverted_index.need | 33 |
| abstract_inverted_index.only | 200 |
| abstract_inverted_index.sets | 195 |
| abstract_inverted_index.show | 213 |
| abstract_inverted_index.slab | 113 |
| abstract_inverted_index.tend | 50 |
| abstract_inverted_index.that | 178 |
| abstract_inverted_index.this | 81, 160 |
| abstract_inverted_index.well | 148, 192 |
| abstract_inverted_index.when | 163 |
| abstract_inverted_index.with | 10, 169 |
| abstract_inverted_index.along | 9 |
| abstract_inverted_index.apply | 180 |
| abstract_inverted_index.avoid | 177 |
| abstract_inverted_index.data, | 64 |
| abstract_inverted_index.links | 12 |
| abstract_inverted_index.makes | 25 |
| abstract_inverted_index.often | 32 |
| abstract_inverted_index.prior | 116 |
| abstract_inverted_index.spike | 111 |
| abstract_inverted_index.that, | 105 |
| abstract_inverted_index.these | 78 |
| abstract_inverted_index.under | 62 |
| abstract_inverted_index.which | 89, 198 |
| abstract_inverted_index.Causal | 0 |
| abstract_inverted_index.causal | 11, 145 |
| abstract_inverted_index.effect | 6, 141 |
| abstract_inverted_index.either | 170 |
| abstract_inverted_index.method | 211 |
| abstract_inverted_index.model, | 59 |
| abstract_inverted_index.model. | 102, 130, 206 |
| abstract_inverted_index.obtain | 119 |
| abstract_inverted_index.paper, | 82 |
| abstract_inverted_index.priors | 114 |
| abstract_inverted_index.robust | 86 |
| abstract_inverted_index.subset | 37 |
| abstract_inverted_index.achieve | 104 |
| abstract_inverted_index.address | 77 |
| abstract_inverted_index.assess, | 71 |
| abstract_inverted_index.between | 13, 23 |
| abstract_inverted_index.effect. | 45 |
| abstract_inverted_index.finding | 3 |
| abstract_inverted_index.harmful | 74 |
| abstract_inverted_index.issues, | 79 |
| abstract_inverted_index.leading | 72 |
| abstract_inverted_index.limited | 63 |
| abstract_inverted_index.methods | 49 |
| abstract_inverted_index.outcome | 129, 205 |
| abstract_inverted_index.problem | 27 |
| abstract_inverted_index.related | 201 |
| abstract_inverted_index.scheme, | 184 |
| abstract_inverted_index.smaller | 187 |
| abstract_inverted_index.through | 115 |
| abstract_inverted_index.Bayesian | 87 |
| abstract_inverted_index.Finally, | 207 |
| abstract_inverted_index.However, | 19, 153 |
| abstract_inverted_index.accounts | 90 |
| abstract_inverted_index.analysis | 88 |
| abstract_inverted_index.concerns | 2 |
| abstract_inverted_index.consider | 84, 107 |
| abstract_inverted_index.maximise | 52 |
| abstract_inverted_index.outcome. | 18, 175 |
| abstract_inverted_index.post-hoc | 182 |
| abstract_inverted_index.separate | 194 |
| abstract_inverted_index.setting, | 161 |
| abstract_inverted_index.strongly | 167 |
| abstract_inverted_index.subjects | 8, 24 |
| abstract_inverted_index.variable | 47 |
| abstract_inverted_index.attaining | 185 |
| abstract_inverted_index.deceptive | 158 |
| abstract_inverted_index.inference | 1, 146 |
| abstract_inverted_index.predictor | 165 |
| abstract_inverted_index.selecting | 94 |
| abstract_inverted_index.selection | 48, 155, 183 |
| abstract_inverted_index.treatment | 5, 44, 127, 140, 172, 203 |
| abstract_inverted_index.variables | 15, 40, 96, 197 |
| abstract_inverted_index.Currently, | 46 |
| abstract_inverted_index.abstention | 92 |
| abstract_inverted_index.associated | 168 |
| abstract_inverted_index.confounder | 151, 154 |
| abstract_inverted_index.especially | 162 |
| abstract_inverted_index.illustrate | 209 |
| abstract_inverted_index.interested | 134 |
| abstract_inverted_index.posteriors | 123 |
| abstract_inverted_index.predictive | 54, 66 |
| abstract_inverted_index.regression | 101 |
| abstract_inverted_index.underlying | 21, 58 |
| abstract_inverted_index.understand | 42 |
| abstract_inverted_index.variables. | 152 |
| abstract_inverted_index.confounders | 190 |
| abstract_inverted_index.dimensional | 100, 144 |
| abstract_inverted_index.elicitation | 117 |
| abstract_inverted_index.explanatory | 39, 95 |
| abstract_inverted_index.identifying | 150 |
| abstract_inverted_index.performance | 55, 67 |
| abstract_inverted_index.practically | 28 |
| abstract_inverted_index.sensitivity | 137 |
| abstract_inverted_index.unsolvable. | 29 |
| abstract_inverted_index.specifically | 133 |
| abstract_inverted_index.Additionally, | 30 |
| abstract_inverted_index.consequences. | 75 |
| abstract_inverted_index.heterogeneity | 22 |
| abstract_inverted_index.applicability. | 215 |
| abstract_inverted_index.unfortunately, | 61 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5065361277 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I181647926 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.54294638 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |