A Robust Hybrid Neural Network Architecture for Blind Source Separation of Speech Signals Exploiting Deep Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/access.2023.3313972
In the contemporary era, blind source separation has emerged as a highly appealing and significant research topic within the field of signal processing. The imperative for the integration of blind source separation techniques within the context of beyond fifth-generation and sixth-generation networks arises from the increasing demand for reliable and efficient communication systems that can effectively handle the challenges posed by high-density networks, dynamic interference environments, and the coexistence of diverse signal sources, thereby enabling enhanced signal extraction and separation for improved system performance. Particularly, audio processing presents a critical domain where the challenge lies in effectively handling files containing a mixture of human speech, silence, and music. Addressing this challenge, speech separation systems can be regarded as a specialized form of human speech recognition or audio signal classification systems that are leveraged to separate, identify, or delineate segments of audio signals encompassing human speech. In various applications such as volume reduction, quality enhancement, detection, and identification, the need arises to separate human speech by eliminating silence, music, or environmental noise from the audio signals. Consequently, the development of robust methods for accurate and efficient speech separation holds paramount importance in optimizing audio signal processing tasks. This study proposes a novel three-way neural network architecture that incorporates transfer learning, a pre-trained dual-path recurrent neural network, and a transformer. In addition to learning the time series associated with audio signals, this network possesses the unique capability of direct context-awareness for modeling the speech sequence within the transformer framework. A comprehensive array of simulations is meticulously conducted to evaluate the performance of the proposed model, which is benchmarked with seven prominent state-of-the-art deep learning-based architectures. The results obtained from these evaluations demonstrate notable advancements in multiple objective metrics. Specifically, our proposed solution showcases an average improvement of 4.60% in terms of short-time objective intelligibility, 14.84% in source-to-distortion ratio, and 9.87% in scale-invariant signal-to-noise ratio. These extraordinary advancements surpass those achieved by the nearest rival, namely the dual-path recurrent neural network time-domain audio separation network, firmly establishing the superiority of our proposed model’s performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2023.3313972
- https://ieeexplore.ieee.org/ielx7/6287639/10005208/10247035.pdf
- OA Status
- gold
- Cited By
- 23
- References
- 89
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386609216
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386609216Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2023.3313972Digital Object Identifier
- Title
-
A Robust Hybrid Neural Network Architecture for Blind Source Separation of Speech Signals Exploiting Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Sam Ansari, Khawla A. Alnajjar, Tarek Khater, Soliman A. Mahmoud, Abir HussainList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2023.3313972Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/10005208/10247035.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/10005208/10247035.pdfDirect OA link when available
- Concepts
-
Computer science, Speech recognition, Voice activity detection, Speech enhancement, Audio signal, Speech processing, Source separation, Audio signal processing, Blind signal separation, Speech coding, Deep learning, Artificial intelligence, Noise reduction, Telecommunications, Channel (broadcasting)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
23Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 7, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
89Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386609216 |
|---|---|
| doi | https://doi.org/10.1109/access.2023.3313972 |
| ids.doi | https://doi.org/10.1109/access.2023.3313972 |
| ids.openalex | https://openalex.org/W4386609216 |
| fwci | 6.17400488 |
| type | article |
| title | A Robust Hybrid Neural Network Architecture for Blind Source Separation of Speech Signals Exploiting Deep Learning |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 100437 |
| biblio.first_page | 100414 |
| topics[0].id | https://openalex.org/T11447 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Blind Source Separation Techniques |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T12357 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9871000051498413 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Media Forensic Detection |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8228991031646729 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C28490314 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6172490119934082 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[1].display_name | Speech recognition |
| concepts[2].id | https://openalex.org/C204201278 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5571418404579163 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1332614 |
| concepts[2].display_name | Voice activity detection |
| concepts[3].id | https://openalex.org/C2776182073 |
| concepts[3].level | 3 |
| concepts[3].score | 0.543080747127533 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7575395 |
| concepts[3].display_name | Speech enhancement |
| concepts[4].id | https://openalex.org/C64922751 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5197767615318298 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4650799 |
| concepts[4].display_name | Audio signal |
| concepts[5].id | https://openalex.org/C61328038 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49822187423706055 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3358061 |
| concepts[5].display_name | Speech processing |
| concepts[6].id | https://openalex.org/C2776864781 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46469753980636597 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q52617913 |
| concepts[6].display_name | Source separation |
| concepts[7].id | https://openalex.org/C127220857 |
| concepts[7].level | 4 |
| concepts[7].score | 0.4200447201728821 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2719318 |
| concepts[7].display_name | Audio signal processing |
| concepts[8].id | https://openalex.org/C120317606 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4195857048034668 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17105967 |
| concepts[8].display_name | Blind signal separation |
| concepts[9].id | https://openalex.org/C13895895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41818681359291077 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3270773 |
| concepts[9].display_name | Speech coding |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41711312532424927 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3707827925682068 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C163294075 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2392408549785614 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[12].display_name | Noise reduction |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.15704503655433655 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C127162648 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[14].display_name | Channel (broadcasting) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8228991031646729 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/speech-recognition |
| keywords[1].score | 0.6172490119934082 |
| keywords[1].display_name | Speech recognition |
| keywords[2].id | https://openalex.org/keywords/voice-activity-detection |
| keywords[2].score | 0.5571418404579163 |
| keywords[2].display_name | Voice activity detection |
| keywords[3].id | https://openalex.org/keywords/speech-enhancement |
| keywords[3].score | 0.543080747127533 |
| keywords[3].display_name | Speech enhancement |
| keywords[4].id | https://openalex.org/keywords/audio-signal |
| keywords[4].score | 0.5197767615318298 |
| keywords[4].display_name | Audio signal |
| keywords[5].id | https://openalex.org/keywords/speech-processing |
| keywords[5].score | 0.49822187423706055 |
| keywords[5].display_name | Speech processing |
| keywords[6].id | https://openalex.org/keywords/source-separation |
| keywords[6].score | 0.46469753980636597 |
| keywords[6].display_name | Source separation |
| keywords[7].id | https://openalex.org/keywords/audio-signal-processing |
| keywords[7].score | 0.4200447201728821 |
| keywords[7].display_name | Audio signal processing |
| keywords[8].id | https://openalex.org/keywords/blind-signal-separation |
| keywords[8].score | 0.4195857048034668 |
| keywords[8].display_name | Blind signal separation |
| keywords[9].id | https://openalex.org/keywords/speech-coding |
| keywords[9].score | 0.41818681359291077 |
| keywords[9].display_name | Speech coding |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.41711312532424927 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3707827925682068 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/noise-reduction |
| keywords[12].score | 0.2392408549785614 |
| keywords[12].display_name | Noise reduction |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.15704503655433655 |
| keywords[13].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1109/access.2023.3313972 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/10005208/10247035.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2023.3313972 |
| locations[1].id | pmh:oai:researchonline.ljmu.ac.uk:21913 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401246 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Liverpool John Moores University |
| locations[1].source.host_organization | https://openalex.org/I63098007 |
| locations[1].source.host_organization_name | Liverpool John Moores University |
| locations[1].source.host_organization_lineage | https://openalex.org/I63098007 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | PeerReviewed |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://orcid.org/0000-0001-8413-0045 |
| locations[2].id | pmh:oai:doaj.org/article:599af5c95bf945588b81b3479cc90646 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Access, Vol 11, Pp 100414-100437 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/599af5c95bf945588b81b3479cc90646 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5050454101 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3735-4972 |
| authorships[0].author.display_name | Sam Ansari |
| authorships[0].countries | AE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates |
| authorships[0].institutions[0].id | https://openalex.org/I29891158 |
| authorships[0].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[0].institutions[0].country_code | AE |
| authorships[0].institutions[0].display_name | University of Sharjah |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sam Ansari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates |
| authorships[1].author.id | https://openalex.org/A5086105087 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4218-9687 |
| authorships[1].author.display_name | Khawla A. Alnajjar |
| authorships[1].countries | AE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates |
| authorships[1].institutions[0].id | https://openalex.org/I29891158 |
| authorships[1].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[1].institutions[0].country_code | AE |
| authorships[1].institutions[0].display_name | University of Sharjah |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khawla A. Alnajjar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates |
| authorships[2].author.id | https://openalex.org/A5010255072 |
| authorships[2].author.orcid | https://orcid.org/0009-0009-4603-8139 |
| authorships[2].author.display_name | Tarek Khater |
| authorships[2].countries | AE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates |
| authorships[2].institutions[0].id | https://openalex.org/I29891158 |
| authorships[2].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[2].institutions[0].country_code | AE |
| authorships[2].institutions[0].display_name | University of Sharjah |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tarek Khater |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates |
| authorships[3].author.id | https://openalex.org/A5001164203 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0581-1796 |
| authorships[3].author.display_name | Soliman A. Mahmoud |
| authorships[3].countries | AE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I29891158 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210153389 |
| authorships[3].affiliations[1].raw_affiliation_string | University of Khorfakkan, Khor Fakkan, United Arab Emirates |
| authorships[3].institutions[0].id | https://openalex.org/I4210153389 |
| authorships[3].institutions[0].ror | https://ror.org/0440yjn92 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210153389 |
| authorships[3].institutions[0].country_code | AE |
| authorships[3].institutions[0].display_name | American University of Ras Al Khaimah |
| authorships[3].institutions[1].id | https://openalex.org/I29891158 |
| authorships[3].institutions[1].ror | https://ror.org/00engpz63 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I29891158 |
| authorships[3].institutions[1].country_code | AE |
| authorships[3].institutions[1].display_name | University of Sharjah |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Soliman Mahmoud |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates, University of Khorfakkan, Khor Fakkan, United Arab Emirates |
| authorships[4].author.id | https://openalex.org/A5025789067 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8413-0045 |
| authorships[4].author.display_name | Abir Hussain |
| authorships[4].countries | AE, GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I63098007 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Mathematics, Faculty of Engineering, Liverpool John Moores University, Liverpool, U.K. |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I29891158 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates |
| authorships[4].institutions[0].id | https://openalex.org/I29891158 |
| authorships[4].institutions[0].ror | https://ror.org/00engpz63 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I29891158 |
| authorships[4].institutions[0].country_code | AE |
| authorships[4].institutions[0].display_name | University of Sharjah |
| authorships[4].institutions[1].id | https://openalex.org/I63098007 |
| authorships[4].institutions[1].ror | https://ror.org/04zfme737 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I63098007 |
| authorships[4].institutions[1].country_code | GB |
| authorships[4].institutions[1].display_name | Liverpool John Moores University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Abir Hussain |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates, School of Computer Science and Mathematics, Faculty of Engineering, Liverpool John Moores University, Liverpool, U.K. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/10005208/10247035.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Robust Hybrid Neural Network Architecture for Blind Source Separation of Speech Signals Exploiting Deep Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11447 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Blind Source Separation Techniques |
| related_works | https://openalex.org/W2294333436, https://openalex.org/W2653598178, https://openalex.org/W2373767407, https://openalex.org/W2289868279, https://openalex.org/W4252682934, https://openalex.org/W2851491717, https://openalex.org/W2072884270, https://openalex.org/W2356426224, https://openalex.org/W2002298560, https://openalex.org/W2019256813 |
| cited_by_count | 23 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/access.2023.3313972 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/10005208/10247035.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2023.3313972 |
| primary_location.id | doi:10.1109/access.2023.3313972 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/10005208/10247035.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2023.3313972 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4205829142, https://openalex.org/W3119048198, https://openalex.org/W2099741732, https://openalex.org/W4313855693, https://openalex.org/W2893949740, https://openalex.org/W4280555981, https://openalex.org/W2012762214, https://openalex.org/W3161538827, https://openalex.org/W2112069101, https://openalex.org/W4224881951, https://openalex.org/W4281298315, https://openalex.org/W4221094122, https://openalex.org/W2890811126, https://openalex.org/W3112812252, https://openalex.org/W2900051367, https://openalex.org/W4309137557, https://openalex.org/W3168325900, https://openalex.org/W3081267827, https://openalex.org/W6633621281, https://openalex.org/W2067295501, https://openalex.org/W3093672386, https://openalex.org/W2141224535, https://openalex.org/W2127851351, https://openalex.org/W2143132653, https://openalex.org/W2099643718, https://openalex.org/W3096893582, https://openalex.org/W285277413, https://openalex.org/W3015199127, https://openalex.org/W2108384452, https://openalex.org/W6603838645, https://openalex.org/W2129635145, https://openalex.org/W3163652268, https://openalex.org/W2001012564, https://openalex.org/W2933708090, https://openalex.org/W2097694145, https://openalex.org/W4322503713, https://openalex.org/W3126559606, https://openalex.org/W2608506311, https://openalex.org/W2558649592, https://openalex.org/W2221409856, https://openalex.org/W1489793438, https://openalex.org/W2962935966, https://openalex.org/W2801839390, https://openalex.org/W2952218014, https://openalex.org/W2146711600, https://openalex.org/W1997652134, https://openalex.org/W2552071709, https://openalex.org/W1996355918, https://openalex.org/W3010840654, https://openalex.org/W2888856843, https://openalex.org/W2963751183, https://openalex.org/W1989257229, https://openalex.org/W2587994092, https://openalex.org/W2164274618, https://openalex.org/W3187101906, https://openalex.org/W2140592340, https://openalex.org/W3094316140, https://openalex.org/W3120759960, https://openalex.org/W4319867371, https://openalex.org/W2123649031, https://openalex.org/W1957473367, https://openalex.org/W4379143744, https://openalex.org/W2408744528, https://openalex.org/W2516559668, https://openalex.org/W4387394813, https://openalex.org/W4316363548, https://openalex.org/W2139302694, https://openalex.org/W4301947488, https://openalex.org/W4205672950, https://openalex.org/W184454132, https://openalex.org/W2783566019, https://openalex.org/W4385577011, https://openalex.org/W3117812988, https://openalex.org/W2902808043, https://openalex.org/W1977067929, https://openalex.org/W3172115363, https://openalex.org/W2119647652, https://openalex.org/W3106160613, https://openalex.org/W3131257862, https://openalex.org/W3121062593, https://openalex.org/W3197846015, https://openalex.org/W6763681123, https://openalex.org/W3126274612, https://openalex.org/W2996164618, https://openalex.org/W1755563775, https://openalex.org/W3099330747, https://openalex.org/W1563800729, https://openalex.org/W2950255439, https://openalex.org/W95152782 |
| referenced_works_count | 89 |
| abstract_inverted_index.A | 247 |
| abstract_inverted_index.a | 10, 88, 100, 118, 199, 209, 216 |
| abstract_inverted_index.In | 0, 145, 218 |
| abstract_inverted_index.an | 291 |
| abstract_inverted_index.as | 9, 117, 149 |
| abstract_inverted_index.be | 115 |
| abstract_inverted_index.by | 60, 164, 318 |
| abstract_inverted_index.in | 95, 190, 282, 296, 303, 308 |
| abstract_inverted_index.is | 252, 264 |
| abstract_inverted_index.of | 20, 28, 36, 69, 102, 121, 139, 178, 235, 250, 259, 294, 298, 336 |
| abstract_inverted_index.or | 125, 136, 168 |
| abstract_inverted_index.to | 133, 160, 220, 255 |
| abstract_inverted_index.The | 23, 273 |
| abstract_inverted_index.and | 13, 39, 49, 66, 78, 106, 155, 183, 215, 306 |
| abstract_inverted_index.are | 131 |
| abstract_inverted_index.can | 54, 114 |
| abstract_inverted_index.for | 25, 47, 80, 181, 238 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.our | 287, 337 |
| abstract_inverted_index.the | 1, 18, 26, 34, 44, 57, 67, 92, 157, 172, 176, 222, 232, 240, 244, 257, 260, 319, 323, 334 |
| abstract_inverted_index.This | 196 |
| abstract_inverted_index.deep | 270 |
| abstract_inverted_index.era, | 3 |
| abstract_inverted_index.form | 120 |
| abstract_inverted_index.from | 43, 171, 276 |
| abstract_inverted_index.lies | 94 |
| abstract_inverted_index.need | 158 |
| abstract_inverted_index.such | 148 |
| abstract_inverted_index.that | 53, 130, 205 |
| abstract_inverted_index.this | 109, 229 |
| abstract_inverted_index.time | 223 |
| abstract_inverted_index.with | 226, 266 |
| abstract_inverted_index.These | 312 |
| abstract_inverted_index.array | 249 |
| abstract_inverted_index.audio | 85, 126, 140, 173, 192, 227, 329 |
| abstract_inverted_index.blind | 4, 29 |
| abstract_inverted_index.field | 19 |
| abstract_inverted_index.files | 98 |
| abstract_inverted_index.holds | 187 |
| abstract_inverted_index.human | 103, 122, 143, 162 |
| abstract_inverted_index.noise | 170 |
| abstract_inverted_index.novel | 200 |
| abstract_inverted_index.posed | 59 |
| abstract_inverted_index.seven | 267 |
| abstract_inverted_index.study | 197 |
| abstract_inverted_index.terms | 297 |
| abstract_inverted_index.these | 277 |
| abstract_inverted_index.those | 316 |
| abstract_inverted_index.topic | 16 |
| abstract_inverted_index.where | 91 |
| abstract_inverted_index.which | 263 |
| abstract_inverted_index.arises | 42, 159 |
| abstract_inverted_index.beyond | 37 |
| abstract_inverted_index.demand | 46 |
| abstract_inverted_index.direct | 236 |
| abstract_inverted_index.domain | 90 |
| abstract_inverted_index.firmly | 332 |
| abstract_inverted_index.handle | 56 |
| abstract_inverted_index.highly | 11 |
| abstract_inverted_index.model, | 262 |
| abstract_inverted_index.music, | 167 |
| abstract_inverted_index.music. | 107 |
| abstract_inverted_index.namely | 322 |
| abstract_inverted_index.neural | 202, 213, 326 |
| abstract_inverted_index.ratio, | 305 |
| abstract_inverted_index.ratio. | 311 |
| abstract_inverted_index.rival, | 321 |
| abstract_inverted_index.robust | 179 |
| abstract_inverted_index.series | 224 |
| abstract_inverted_index.signal | 21, 71, 76, 127, 193 |
| abstract_inverted_index.source | 5, 30 |
| abstract_inverted_index.speech | 111, 123, 163, 185, 241 |
| abstract_inverted_index.system | 82 |
| abstract_inverted_index.tasks. | 195 |
| abstract_inverted_index.unique | 233 |
| abstract_inverted_index.volume | 150 |
| abstract_inverted_index.within | 17, 33, 243 |
| abstract_inverted_index.average | 292 |
| abstract_inverted_index.context | 35 |
| abstract_inverted_index.diverse | 70 |
| abstract_inverted_index.dynamic | 63 |
| abstract_inverted_index.emerged | 8 |
| abstract_inverted_index.methods | 180 |
| abstract_inverted_index.mixture | 101 |
| abstract_inverted_index.nearest | 320 |
| abstract_inverted_index.network | 203, 230, 327 |
| abstract_inverted_index.notable | 280 |
| abstract_inverted_index.quality | 152 |
| abstract_inverted_index.results | 274 |
| abstract_inverted_index.signals | 141 |
| abstract_inverted_index.speech, | 104 |
| abstract_inverted_index.speech. | 144 |
| abstract_inverted_index.surpass | 315 |
| abstract_inverted_index.systems | 52, 113, 129 |
| abstract_inverted_index.thereby | 73 |
| abstract_inverted_index.various | 146 |
| abstract_inverted_index.accurate | 182 |
| abstract_inverted_index.achieved | 317 |
| abstract_inverted_index.addition | 219 |
| abstract_inverted_index.critical | 89 |
| abstract_inverted_index.enabling | 74 |
| abstract_inverted_index.enhanced | 75 |
| abstract_inverted_index.evaluate | 256 |
| abstract_inverted_index.handling | 97 |
| abstract_inverted_index.improved | 81 |
| abstract_inverted_index.learning | 221 |
| abstract_inverted_index.metrics. | 285 |
| abstract_inverted_index.modeling | 239 |
| abstract_inverted_index.multiple | 283 |
| abstract_inverted_index.network, | 214, 331 |
| abstract_inverted_index.networks | 41 |
| abstract_inverted_index.obtained | 275 |
| abstract_inverted_index.presents | 87 |
| abstract_inverted_index.proposed | 261, 288, 338 |
| abstract_inverted_index.proposes | 198 |
| abstract_inverted_index.regarded | 116 |
| abstract_inverted_index.reliable | 48 |
| abstract_inverted_index.research | 15 |
| abstract_inverted_index.segments | 138 |
| abstract_inverted_index.separate | 161 |
| abstract_inverted_index.sequence | 242 |
| abstract_inverted_index.signals, | 228 |
| abstract_inverted_index.signals. | 174 |
| abstract_inverted_index.silence, | 105, 166 |
| abstract_inverted_index.solution | 289 |
| abstract_inverted_index.sources, | 72 |
| abstract_inverted_index.transfer | 207 |
| abstract_inverted_index.appealing | 12 |
| abstract_inverted_index.challenge | 93 |
| abstract_inverted_index.conducted | 254 |
| abstract_inverted_index.delineate | 137 |
| abstract_inverted_index.dual-path | 211, 324 |
| abstract_inverted_index.efficient | 50, 184 |
| abstract_inverted_index.identify, | 135 |
| abstract_inverted_index.learning, | 208 |
| abstract_inverted_index.leveraged | 132 |
| abstract_inverted_index.networks, | 62 |
| abstract_inverted_index.objective | 284, 300 |
| abstract_inverted_index.paramount | 188 |
| abstract_inverted_index.possesses | 231 |
| abstract_inverted_index.prominent | 268 |
| abstract_inverted_index.recurrent | 212, 325 |
| abstract_inverted_index.separate, | 134 |
| abstract_inverted_index.showcases | 290 |
| abstract_inverted_index.three-way | 201 |
| abstract_inverted_index.Addressing | 108 |
| abstract_inverted_index.associated | 225 |
| abstract_inverted_index.capability | 234 |
| abstract_inverted_index.challenge, | 110 |
| abstract_inverted_index.challenges | 58 |
| abstract_inverted_index.containing | 99 |
| abstract_inverted_index.detection, | 154 |
| abstract_inverted_index.extraction | 77 |
| abstract_inverted_index.framework. | 246 |
| abstract_inverted_index.imperative | 24 |
| abstract_inverted_index.importance | 189 |
| abstract_inverted_index.increasing | 45 |
| abstract_inverted_index.optimizing | 191 |
| abstract_inverted_index.processing | 86, 194 |
| abstract_inverted_index.reduction, | 151 |
| abstract_inverted_index.separation | 6, 31, 79, 112, 186, 330 |
| abstract_inverted_index.short-time | 299 |
| abstract_inverted_index.techniques | 32 |
| abstract_inverted_index.benchmarked | 265 |
| abstract_inverted_index.coexistence | 68 |
| abstract_inverted_index.demonstrate | 279 |
| abstract_inverted_index.development | 177 |
| abstract_inverted_index.effectively | 55, 96 |
| abstract_inverted_index.eliminating | 165 |
| abstract_inverted_index.evaluations | 278 |
| abstract_inverted_index.improvement | 293 |
| abstract_inverted_index.integration | 27 |
| abstract_inverted_index.performance | 258 |
| abstract_inverted_index.pre-trained | 210 |
| abstract_inverted_index.processing. | 22 |
| abstract_inverted_index.recognition | 124 |
| abstract_inverted_index.significant | 14 |
| abstract_inverted_index.simulations | 251 |
| abstract_inverted_index.specialized | 119 |
| abstract_inverted_index.superiority | 335 |
| abstract_inverted_index.time-domain | 328 |
| abstract_inverted_index.transformer | 245 |
| abstract_inverted_index.4.60% | 295 |
| abstract_inverted_index.9.87% | 307 |
| abstract_inverted_index.advancements | 281, 314 |
| abstract_inverted_index.applications | 147 |
| abstract_inverted_index.architecture | 204 |
| abstract_inverted_index.contemporary | 2 |
| abstract_inverted_index.encompassing | 142 |
| abstract_inverted_index.enhancement, | 153 |
| abstract_inverted_index.establishing | 333 |
| abstract_inverted_index.high-density | 61 |
| abstract_inverted_index.incorporates | 206 |
| abstract_inverted_index.interference | 64 |
| abstract_inverted_index.meticulously | 253 |
| abstract_inverted_index.performance. | 83, 340 |
| abstract_inverted_index.transformer. | 217 |
| abstract_inverted_index.14.84% | 302 |
| abstract_inverted_index.Consequently, | 175 |
| abstract_inverted_index.Particularly, | 84 |
| abstract_inverted_index.Specifically, | 286 |
| abstract_inverted_index.communication | 51 |
| abstract_inverted_index.comprehensive | 248 |
| abstract_inverted_index.environmental | 169 |
| abstract_inverted_index.environments, | 65 |
| abstract_inverted_index.extraordinary | 313 |
| abstract_inverted_index.architectures. | 272 |
| abstract_inverted_index.classification | 128 |
| abstract_inverted_index.learning-based | 271 |
| abstract_inverted_index.model’s | 339 |
| abstract_inverted_index.identification, | 156 |
| abstract_inverted_index.scale-invariant | 309 |
| abstract_inverted_index.signal-to-noise | 310 |
| abstract_inverted_index.fifth-generation | 38 |
| abstract_inverted_index.intelligibility, | 301 |
| abstract_inverted_index.sixth-generation | 40 |
| abstract_inverted_index.state-of-the-art | 269 |
| abstract_inverted_index.context-awareness | 237 |
| abstract_inverted_index.source-to-distortion | 304 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.96907757 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |