A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data Analytics Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.32604/cmc.2019.05214
With the rapid development of mobile Internet and finance technology, online e-commerce transactions have been increasing and expanding very fast, which globally brings a lot of convenience and availability to our life, but meanwhile, chances of committing frauds also come in all shapes and sizes. Moreover, fraud detection in online e-commerce transactions is not totally the same to that in the existing areas due to the massive amounts of data generated in e-commerce, which makes the fraudulent transactions more covertly scattered with genuine transactions than before. In this article, a novel scalable and comprehensive approach for fraud detection in online e-commerce transactions is proposed with majorly four logical modules, which uses big data analytics and machine learning algorithms to parallelize the processing of the data from a Chinese e-commerce company. Groups of experimental results show that the approach is more accurate and efficient to detect frauds in online e-commerce transactions and scalable for big data processing to obtain real-time property.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/cmc.2019.05214
- OA Status
- diamond
- Cited By
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2954006418
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2954006418Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/cmc.2019.05214Digital Object Identifier
- Title
-
A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data AnalyticsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Hangjun Zhou, Guang Sun, Sha Fu, Wangdong Jiang, Juan XueList of authors in order
- Landing page
-
https://doi.org/10.32604/cmc.2019.05214Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.32604/cmc.2019.05214Direct OA link when available
- Concepts
-
Scalability, Big data, Computer science, Analytics, Property (philosophy), The Internet, Data science, Computer security, Database, World Wide Web, Data mining, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 5, 2023: 4, 2021: 6, 2020: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2954006418 |
|---|---|
| doi | https://doi.org/10.32604/cmc.2019.05214 |
| ids.doi | https://doi.org/10.32604/cmc.2019.05214 |
| ids.mag | 2954006418 |
| ids.openalex | https://openalex.org/W2954006418 |
| fwci | 1.6897952 |
| type | article |
| title | A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data Analytics |
| biblio.issue | 1 |
| biblio.volume | 60 |
| biblio.last_page | 192 |
| biblio.first_page | 179 |
| topics[0].id | https://openalex.org/T11652 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9939000010490417 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Imbalanced Data Classification Techniques |
| topics[1].id | https://openalex.org/T11891 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.9330000281333923 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1404 |
| topics[1].subfield.display_name | Management Information Systems |
| topics[1].display_name | Big Data and Business Intelligence |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C48044578 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8227062225341797 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[0].display_name | Scalability |
| concepts[1].id | https://openalex.org/C75684735 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8084021210670471 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[1].display_name | Big data |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7797538638114929 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C79158427 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6156440377235413 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[3].display_name | Analytics |
| concepts[4].id | https://openalex.org/C189950617 |
| concepts[4].level | 2 |
| concepts[4].score | 0.439823716878891 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q937228 |
| concepts[4].display_name | Property (philosophy) |
| concepts[5].id | https://openalex.org/C110875604 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41817498207092285 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[5].display_name | The Internet |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4045540690422058 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C38652104 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35168343782424927 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[7].display_name | Computer security |
| concepts[8].id | https://openalex.org/C77088390 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2683197855949402 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[8].display_name | Database |
| concepts[9].id | https://openalex.org/C136764020 |
| concepts[9].level | 1 |
| concepts[9].score | 0.26558181643486023 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[9].display_name | World Wide Web |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.24303314089775085 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C111472728 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[11].display_name | Epistemology |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/scalability |
| keywords[0].score | 0.8227062225341797 |
| keywords[0].display_name | Scalability |
| keywords[1].id | https://openalex.org/keywords/big-data |
| keywords[1].score | 0.8084021210670471 |
| keywords[1].display_name | Big data |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7797538638114929 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/analytics |
| keywords[3].score | 0.6156440377235413 |
| keywords[3].display_name | Analytics |
| keywords[4].id | https://openalex.org/keywords/property |
| keywords[4].score | 0.439823716878891 |
| keywords[4].display_name | Property (philosophy) |
| keywords[5].id | https://openalex.org/keywords/the-internet |
| keywords[5].score | 0.41817498207092285 |
| keywords[5].display_name | The Internet |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.4045540690422058 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/computer-security |
| keywords[7].score | 0.35168343782424927 |
| keywords[7].display_name | Computer security |
| keywords[8].id | https://openalex.org/keywords/database |
| keywords[8].score | 0.2683197855949402 |
| keywords[8].display_name | Database |
| keywords[9].id | https://openalex.org/keywords/world-wide-web |
| keywords[9].score | 0.26558181643486023 |
| keywords[9].display_name | World Wide Web |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.24303314089775085 |
| keywords[10].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.32604/cmc.2019.05214 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191605 |
| locations[0].source.issn | 1546-2218, 1546-2226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1546-2218 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computers, Materials & Continua |
| locations[0].landing_page_url | https://doi.org/10.32604/cmc.2019.05214 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5082227865 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hangjun Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hangjun Zhou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110572084 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1041-0145 |
| authorships[1].author.display_name | Guang Sun |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guang Sun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101544731 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8720-9162 |
| authorships[2].author.display_name | Sha Fu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sha Fu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5083012150 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Wangdong Jiang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wangdong Jiang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5033253493 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3195-773X |
| authorships[4].author.display_name | Juan Xue |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Juan Xue |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.32604/cmc.2019.05214 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data Analytics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11652 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9939000010490417 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Imbalanced Data Classification Techniques |
| related_works | https://openalex.org/W4390608645, https://openalex.org/W4247566972, https://openalex.org/W2960264696, https://openalex.org/W3090563135, https://openalex.org/W2497432351, https://openalex.org/W4206777497, https://openalex.org/W4233347783, https://openalex.org/W2910064364, https://openalex.org/W4255224757, https://openalex.org/W2499527417 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/cmc.2019.05214 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191605 |
| best_oa_location.source.issn | 1546-2218, 1546-2226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1546-2218 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computers, Materials & Continua |
| best_oa_location.landing_page_url | https://doi.org/10.32604/cmc.2019.05214 |
| primary_location.id | doi:10.32604/cmc.2019.05214 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191605 |
| primary_location.source.issn | 1546-2218, 1546-2226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1546-2218 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computers, Materials & Continua |
| primary_location.landing_page_url | https://doi.org/10.32604/cmc.2019.05214 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 23, 89, 126 |
| abstract_inverted_index.In | 86 |
| abstract_inverted_index.in | 40, 48, 59, 71, 98, 146 |
| abstract_inverted_index.is | 52, 102, 138 |
| abstract_inverted_index.of | 4, 25, 35, 68, 122, 131 |
| abstract_inverted_index.to | 29, 57, 64, 118, 143, 156 |
| abstract_inverted_index.all | 41 |
| abstract_inverted_index.and | 7, 16, 27, 43, 92, 114, 141, 150 |
| abstract_inverted_index.big | 111, 153 |
| abstract_inverted_index.but | 32 |
| abstract_inverted_index.due | 63 |
| abstract_inverted_index.for | 95, 152 |
| abstract_inverted_index.lot | 24 |
| abstract_inverted_index.not | 53 |
| abstract_inverted_index.our | 30 |
| abstract_inverted_index.the | 1, 55, 60, 65, 75, 120, 123, 136 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.also | 38 |
| abstract_inverted_index.been | 14 |
| abstract_inverted_index.come | 39 |
| abstract_inverted_index.data | 69, 112, 124, 154 |
| abstract_inverted_index.four | 106 |
| abstract_inverted_index.from | 125 |
| abstract_inverted_index.have | 13 |
| abstract_inverted_index.more | 78, 139 |
| abstract_inverted_index.same | 56 |
| abstract_inverted_index.show | 134 |
| abstract_inverted_index.than | 84 |
| abstract_inverted_index.that | 58, 135 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.uses | 110 |
| abstract_inverted_index.very | 18 |
| abstract_inverted_index.with | 81, 104 |
| abstract_inverted_index.areas | 62 |
| abstract_inverted_index.fast, | 19 |
| abstract_inverted_index.fraud | 46, 96 |
| abstract_inverted_index.life, | 31 |
| abstract_inverted_index.makes | 74 |
| abstract_inverted_index.novel | 90 |
| abstract_inverted_index.rapid | 2 |
| abstract_inverted_index.which | 20, 73, 109 |
| abstract_inverted_index.Groups | 130 |
| abstract_inverted_index.brings | 22 |
| abstract_inverted_index.detect | 144 |
| abstract_inverted_index.frauds | 37, 145 |
| abstract_inverted_index.mobile | 5 |
| abstract_inverted_index.obtain | 157 |
| abstract_inverted_index.online | 10, 49, 99, 147 |
| abstract_inverted_index.shapes | 42 |
| abstract_inverted_index.sizes. | 44 |
| abstract_inverted_index.Chinese | 127 |
| abstract_inverted_index.amounts | 67 |
| abstract_inverted_index.before. | 85 |
| abstract_inverted_index.chances | 34 |
| abstract_inverted_index.finance | 8 |
| abstract_inverted_index.genuine | 82 |
| abstract_inverted_index.logical | 107 |
| abstract_inverted_index.machine | 115 |
| abstract_inverted_index.majorly | 105 |
| abstract_inverted_index.massive | 66 |
| abstract_inverted_index.results | 133 |
| abstract_inverted_index.totally | 54 |
| abstract_inverted_index.Internet | 6 |
| abstract_inverted_index.accurate | 140 |
| abstract_inverted_index.approach | 94, 137 |
| abstract_inverted_index.article, | 88 |
| abstract_inverted_index.company. | 129 |
| abstract_inverted_index.covertly | 79 |
| abstract_inverted_index.existing | 61 |
| abstract_inverted_index.globally | 21 |
| abstract_inverted_index.learning | 116 |
| abstract_inverted_index.modules, | 108 |
| abstract_inverted_index.proposed | 103 |
| abstract_inverted_index.scalable | 91, 151 |
| abstract_inverted_index.Moreover, | 45 |
| abstract_inverted_index.analytics | 113 |
| abstract_inverted_index.detection | 47, 97 |
| abstract_inverted_index.efficient | 142 |
| abstract_inverted_index.expanding | 17 |
| abstract_inverted_index.generated | 70 |
| abstract_inverted_index.property. | 159 |
| abstract_inverted_index.real-time | 158 |
| abstract_inverted_index.scattered | 80 |
| abstract_inverted_index.algorithms | 117 |
| abstract_inverted_index.committing | 36 |
| abstract_inverted_index.e-commerce | 11, 50, 100, 128, 148 |
| abstract_inverted_index.fraudulent | 76 |
| abstract_inverted_index.increasing | 15 |
| abstract_inverted_index.meanwhile, | 33 |
| abstract_inverted_index.processing | 121, 155 |
| abstract_inverted_index.convenience | 26 |
| abstract_inverted_index.development | 3 |
| abstract_inverted_index.e-commerce, | 72 |
| abstract_inverted_index.parallelize | 119 |
| abstract_inverted_index.technology, | 9 |
| abstract_inverted_index.availability | 28 |
| abstract_inverted_index.experimental | 132 |
| abstract_inverted_index.transactions | 12, 51, 77, 83, 101, 149 |
| abstract_inverted_index.comprehensive | 93 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.87607808 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |