A Scheduling Method for Maintenance Tasks of Damaged Equipment Based on Digital Twin and Robust Optimization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25185674
Aiming at the problems that traditional maintenance task scheduling schemes for damaged equipment have, poor adaptability to changes in uncertain factors and difficult-to-deal-with emergency scenarios, this paper proposes a maintenance task scheduling method for battle-damaged equipment based on digital twin (DT) and robust optimization. The purpose is to realize the dynamic synchronization between physical entities and virtual models through DT technology, and to leverage the anti-interference characteristics of robust optimization. The method involves constructing a multi-objective optimization model that maximizes the comprehensive importance of damaged equipment and minimizes maintenance time, and solving the model using the discrete particle swarm optimization (DPSO) algorithm. Simulation results show that this method can improve the efficiency of maintenance scheduling and the anti-interference ability in emergency situations. Through the comparison of three indicators, DT-DPSO performs the best in the maintenance scheduling of battle-damaged equipment: its convergence speed is 33.3% faster than that of DPSO and 20% faster than that of DT-non-dominated sorting genetic algorithm II (DT-NSGAII); its robustness is 16.3% higher than that of DPSO and 10.7% higher than that of DT-NSGAII; its dynamic reallocation speed is more than 40% faster than that of DPSO and more than 30% faster than that of DT-NSGAII. This method is suitable for maintenance scheduling requirements of high speed, stability, and anti-interference.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25185674
- https://www.mdpi.com/1424-8220/25/18/5674/pdf?version=1757594920
- OA Status
- gold
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4414124501
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414124501Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25185674Digital Object Identifier
- Title
-
A Scheduling Method for Maintenance Tasks of Damaged Equipment Based on Digital Twin and Robust OptimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-11Full publication date if available
- Authors
-
Mingjie Jiang, Tiejun Jiang, Lijun Guo, Shaohua LiuList of authors in order
- Landing page
-
https://doi.org/10.3390/s25185674Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/18/5674/pdf?version=1757594920Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/18/5674/pdf?version=1757594920Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4414124501 |
|---|---|
| doi | https://doi.org/10.3390/s25185674 |
| ids.doi | https://doi.org/10.3390/s25185674 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41012912 |
| ids.openalex | https://openalex.org/W4414124501 |
| fwci | 0.0 |
| type | article |
| title | A Scheduling Method for Maintenance Tasks of Damaged Equipment Based on Digital Twin and Robust Optimization |
| biblio.issue | 18 |
| biblio.volume | 25 |
| biblio.last_page | 5674 |
| biblio.first_page | 5674 |
| topics[0].id | https://openalex.org/T10763 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9944999814033508 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Digital Transformation in Industry |
| topics[1].id | https://openalex.org/T10780 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9908999800682068 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Reliability and Maintenance Optimization |
| topics[2].id | https://openalex.org/T14306 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9851999878883362 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Technology Assessment and Management |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| language | en |
| locations[0].id | doi:10.3390/s25185674 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/18/5674/pdf?version=1757594920 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25185674 |
| locations[1].id | pmid:41012912 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41012912 |
| locations[2].id | pmh:oai:europepmc.org:11282176 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12473725 |
| locations[3].id | pmh:oai:doaj.org/article:affd8d94a3a340829120c364e87e279f |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 25, Iss 18, p 5674 (2025) |
| locations[3].landing_page_url | https://doaj.org/article/affd8d94a3a340829120c364e87e279f |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5108400533 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mingjie Jiang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2800710378 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Management Engineering and Equipment Economics, Naval University of Engineering, Wuhan 430033, China |
| authorships[0].institutions[0].id | https://openalex.org/I2800710378 |
| authorships[0].institutions[0].ror | https://ror.org/056vyez31 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2800710378 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Naval University of Engineering |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mingjie Jiang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Management Engineering and Equipment Economics, Naval University of Engineering, Wuhan 430033, China |
| authorships[1].author.id | https://openalex.org/A5021092430 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3249-5389 |
| authorships[1].author.display_name | Tiejun Jiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2800710378 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Management Engineering and Equipment Economics, Naval University of Engineering, Wuhan 430033, China |
| authorships[1].institutions[0].id | https://openalex.org/I2800710378 |
| authorships[1].institutions[0].ror | https://ror.org/056vyez31 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2800710378 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Naval University of Engineering |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tiejun Jiang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Management Engineering and Equipment Economics, Naval University of Engineering, Wuhan 430033, China |
| authorships[2].author.id | https://openalex.org/A5100756404 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5694-149X |
| authorships[2].author.display_name | Lijun Guo |
| authorships[2].affiliations[0].raw_affiliation_string | Unit No. 91976, Guangzhou 510080, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lijun Guo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Unit No. 91976, Guangzhou 510080, China |
| authorships[3].author.id | https://openalex.org/A5100648899 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1834-0105 |
| authorships[3].author.display_name | Shaohua Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2800710378 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Management Engineering and Equipment Economics, Naval University of Engineering, Wuhan 430033, China |
| authorships[3].institutions[0].id | https://openalex.org/I2800710378 |
| authorships[3].institutions[0].ror | https://ror.org/056vyez31 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800710378 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Naval University of Engineering |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shaohua Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Management Engineering and Equipment Economics, Naval University of Engineering, Wuhan 430033, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/18/5674/pdf?version=1757594920 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Scheduling Method for Maintenance Tasks of Damaged Equipment Based on Digital Twin and Robust Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10763 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9944999814033508 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Digital Transformation in Industry |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25185674 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/18/5674/pdf?version=1757594920 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25185674 |
| primary_location.id | doi:10.3390/s25185674 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/18/5674/pdf?version=1757594920 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25185674 |
| publication_date | 2025-09-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4404116240, https://openalex.org/W4283453485, https://openalex.org/W4402589065, https://openalex.org/W4205391465, https://openalex.org/W4360604684, https://openalex.org/W4408458443, https://openalex.org/W4393218496, https://openalex.org/W4386995537, https://openalex.org/W3134895379, https://openalex.org/W4210356834, https://openalex.org/W4360859676, https://openalex.org/W4402795113, https://openalex.org/W4410762269, https://openalex.org/W4403229044, https://openalex.org/W3094622774, https://openalex.org/W3012133493, https://openalex.org/W3124754490, https://openalex.org/W4321378833, https://openalex.org/W4399237425, https://openalex.org/W4386275742, https://openalex.org/W4319601613, https://openalex.org/W2963167400, https://openalex.org/W4396765706, https://openalex.org/W3114201168, https://openalex.org/W4385431702, https://openalex.org/W4406452067 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 28, 74 |
| abstract_inverted_index.DT | 59 |
| abstract_inverted_index.II | 159 |
| abstract_inverted_index.at | 1 |
| abstract_inverted_index.in | 18, 119, 132 |
| abstract_inverted_index.is | 46, 142, 163, 181, 201 |
| abstract_inverted_index.of | 67, 83, 112, 125, 136, 147, 154, 168, 175, 188, 197, 207 |
| abstract_inverted_index.on | 37 |
| abstract_inverted_index.to | 16, 47, 62 |
| abstract_inverted_index.20% | 150 |
| abstract_inverted_index.30% | 193 |
| abstract_inverted_index.40% | 184 |
| abstract_inverted_index.The | 44, 70 |
| abstract_inverted_index.and | 21, 41, 55, 61, 86, 90, 115, 149, 170, 190, 211 |
| abstract_inverted_index.can | 108 |
| abstract_inverted_index.for | 10, 33, 203 |
| abstract_inverted_index.its | 139, 161, 177 |
| abstract_inverted_index.the | 2, 49, 64, 80, 92, 95, 110, 116, 123, 130, 133 |
| abstract_inverted_index.(DT) | 40 |
| abstract_inverted_index.DPSO | 148, 169, 189 |
| abstract_inverted_index.This | 199 |
| abstract_inverted_index.best | 131 |
| abstract_inverted_index.high | 208 |
| abstract_inverted_index.more | 182, 191 |
| abstract_inverted_index.poor | 14 |
| abstract_inverted_index.show | 104 |
| abstract_inverted_index.task | 7, 30 |
| abstract_inverted_index.than | 145, 152, 166, 173, 183, 186, 192, 195 |
| abstract_inverted_index.that | 4, 78, 105, 146, 153, 167, 174, 187, 196 |
| abstract_inverted_index.this | 25, 106 |
| abstract_inverted_index.twin | 39 |
| abstract_inverted_index.10.7% | 171 |
| abstract_inverted_index.16.3% | 164 |
| abstract_inverted_index.33.3% | 143 |
| abstract_inverted_index.based | 36 |
| abstract_inverted_index.have, | 13 |
| abstract_inverted_index.model | 77, 93 |
| abstract_inverted_index.paper | 26 |
| abstract_inverted_index.speed | 141, 180 |
| abstract_inverted_index.swarm | 98 |
| abstract_inverted_index.three | 126 |
| abstract_inverted_index.time, | 89 |
| abstract_inverted_index.using | 94 |
| abstract_inverted_index.(DPSO) | 100 |
| abstract_inverted_index.Aiming | 0 |
| abstract_inverted_index.faster | 144, 151, 185, 194 |
| abstract_inverted_index.higher | 165, 172 |
| abstract_inverted_index.method | 32, 71, 107, 200 |
| abstract_inverted_index.models | 57 |
| abstract_inverted_index.robust | 42, 68 |
| abstract_inverted_index.speed, | 209 |
| abstract_inverted_index.DT-DPSO | 128 |
| abstract_inverted_index.Through | 122 |
| abstract_inverted_index.ability | 118 |
| abstract_inverted_index.between | 52 |
| abstract_inverted_index.changes | 17 |
| abstract_inverted_index.damaged | 11, 84 |
| abstract_inverted_index.digital | 38 |
| abstract_inverted_index.dynamic | 50, 178 |
| abstract_inverted_index.factors | 20 |
| abstract_inverted_index.genetic | 157 |
| abstract_inverted_index.improve | 109 |
| abstract_inverted_index.purpose | 45 |
| abstract_inverted_index.realize | 48 |
| abstract_inverted_index.results | 103 |
| abstract_inverted_index.schemes | 9 |
| abstract_inverted_index.solving | 91 |
| abstract_inverted_index.sorting | 156 |
| abstract_inverted_index.through | 58 |
| abstract_inverted_index.virtual | 56 |
| abstract_inverted_index.discrete | 96 |
| abstract_inverted_index.entities | 54 |
| abstract_inverted_index.involves | 72 |
| abstract_inverted_index.leverage | 63 |
| abstract_inverted_index.particle | 97 |
| abstract_inverted_index.performs | 129 |
| abstract_inverted_index.physical | 53 |
| abstract_inverted_index.problems | 3 |
| abstract_inverted_index.proposes | 27 |
| abstract_inverted_index.suitable | 202 |
| abstract_inverted_index.algorithm | 158 |
| abstract_inverted_index.emergency | 23, 120 |
| abstract_inverted_index.equipment | 12, 35, 85 |
| abstract_inverted_index.maximizes | 79 |
| abstract_inverted_index.minimizes | 87 |
| abstract_inverted_index.uncertain | 19 |
| abstract_inverted_index.DT-NSGAII. | 198 |
| abstract_inverted_index.DT-NSGAII; | 176 |
| abstract_inverted_index.Simulation | 102 |
| abstract_inverted_index.algorithm. | 101 |
| abstract_inverted_index.comparison | 124 |
| abstract_inverted_index.efficiency | 111 |
| abstract_inverted_index.equipment: | 138 |
| abstract_inverted_index.importance | 82 |
| abstract_inverted_index.robustness | 162 |
| abstract_inverted_index.scenarios, | 24 |
| abstract_inverted_index.scheduling | 8, 31, 114, 135, 205 |
| abstract_inverted_index.stability, | 210 |
| abstract_inverted_index.convergence | 140 |
| abstract_inverted_index.indicators, | 127 |
| abstract_inverted_index.maintenance | 6, 29, 88, 113, 134, 204 |
| abstract_inverted_index.situations. | 121 |
| abstract_inverted_index.technology, | 60 |
| abstract_inverted_index.traditional | 5 |
| abstract_inverted_index.(DT-NSGAII); | 160 |
| abstract_inverted_index.adaptability | 15 |
| abstract_inverted_index.constructing | 73 |
| abstract_inverted_index.optimization | 76, 99 |
| abstract_inverted_index.reallocation | 179 |
| abstract_inverted_index.requirements | 206 |
| abstract_inverted_index.comprehensive | 81 |
| abstract_inverted_index.optimization. | 43, 69 |
| abstract_inverted_index.battle-damaged | 34, 137 |
| abstract_inverted_index.characteristics | 66 |
| abstract_inverted_index.multi-objective | 75 |
| abstract_inverted_index.synchronization | 51 |
| abstract_inverted_index.DT-non-dominated | 155 |
| abstract_inverted_index.anti-interference | 65, 117 |
| abstract_inverted_index.anti-interference. | 212 |
| abstract_inverted_index.difficult-to-deal-with | 22 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5021092430 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I2800710378 |
| citation_normalized_percentile.value | 0.55480248 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |