A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity Anomalies Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/lgrs.2024.3441322
In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency. However, the interpretability, compute, data volume, and hyperparameter tuning requirements of deep learning models make development and monitoring difficult. Furthermore, model explainability and communicating results obtained by these models to users or domain experts is a challenge, as domain experts in geoscience also need to have a deep understanding of how those models function in order to support their scientific works. Here, we describe a science gateway and machine learning pipeline for predicting gravity anomalies from geophysical data. The gateway, built on open-source technologies, provides a holistic view of the pipeline through interactive visualizations aimed at enabling efficient exploratory data analysis. The repeatability, reproducibility, and monitoring capabilities of this overall system allow us to iterate and analyze at scale. Using this pipeline and gateway, we can repeatedly produce accurate high-resolution gravity anomaly datasets. By describing the underlying technologies, implementation, and results, here we provide a foundation for the broader adoption of science gateways into cross-cutting geoscience and machine learning research projects as a means to improve the scientific discovery and collaboration in the geophysics and computational sciences community.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.1109/lgrs.2024.3441322
- OA Status
- green
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401452353
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401452353Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/lgrs.2024.3441322Digital Object Identifier
- Title
-
A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity AnomaliesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Jacob Arndt, Jason Wohlgemuth, H. Lexie Yang, Jordan Bowman, Dalton Lunga, Dawn M. KingList of authors in order
- Landing page
-
https://doi.org/10.1109/lgrs.2024.3441322Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/2441103Direct OA link when available
- Concepts
-
Gateway (web page), Computer science, Artificial intelligence, Machine learning, Data science, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401452353 |
|---|---|
| doi | https://doi.org/10.1109/lgrs.2024.3441322 |
| ids.doi | https://doi.org/10.1109/lgrs.2024.3441322 |
| ids.openalex | https://openalex.org/W4401452353 |
| fwci | 0.0 |
| type | article |
| title | A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity Anomalies |
| biblio.issue | |
| biblio.volume | 21 |
| biblio.last_page | 5 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11405 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1910 |
| topics[0].subfield.display_name | Oceanography |
| topics[0].display_name | Geophysics and Gravity Measurements |
| topics[1].id | https://openalex.org/T11786 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Geomagnetism and Paleomagnetism Studies |
| topics[2].id | https://openalex.org/T10572 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9858999848365784 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1908 |
| topics[2].subfield.display_name | Geophysics |
| topics[2].display_name | Geophysical and Geoelectrical Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777710495 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6976233720779419 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5527195 |
| concepts[0].display_name | Gateway (web page) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5860296487808228 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3625710606575012 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3444455862045288 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.32551074028015137 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C136764020 |
| concepts[5].level | 1 |
| concepts[5].score | 0.17229408025741577 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[5].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/gateway |
| keywords[0].score | 0.6976233720779419 |
| keywords[0].display_name | Gateway (web page) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5860296487808228 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3625710606575012 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.3444455862045288 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.32551074028015137 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/world-wide-web |
| keywords[5].score | 0.17229408025741577 |
| keywords[5].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.1109/lgrs.2024.3441322 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S126920919 |
| locations[0].source.issn | 1545-598X, 1558-0571 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1545-598X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Geoscience and Remote Sensing Letters |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Geoscience and Remote Sensing Letters |
| locations[0].landing_page_url | http://doi.org/10.1109/lgrs.2024.3441322 |
| locations[1].id | pmh:oai:osti.gov:2441103 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/2441103 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5029264783 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1097-0428 |
| authorships[0].author.display_name | Jacob Arndt |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[0].affiliations[0].raw_affiliation_string | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[0].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jacob Arndt |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA |
| authorships[1].author.id | https://openalex.org/A5076241019 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jason Wohlgemuth |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[1].affiliations[0].raw_affiliation_string | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[1].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jason Wohlgemuth |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA |
| authorships[2].author.id | https://openalex.org/A5024089585 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2252-6778 |
| authorships[2].author.display_name | H. Lexie Yang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[2].affiliations[0].raw_affiliation_string | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[2].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | H. Lexie Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA |
| authorships[3].author.id | https://openalex.org/A5074415447 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3495-9186 |
| authorships[3].author.display_name | Jordan Bowman |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[3].affiliations[0].raw_affiliation_string | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[3].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jordan Bowman |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA |
| authorships[4].author.id | https://openalex.org/A5083948807 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0054-1141 |
| authorships[4].author.display_name | Dalton Lunga |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[4].affiliations[0].raw_affiliation_string | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[4].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dalton Lunga |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA |
| authorships[5].author.id | https://openalex.org/A5090041202 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Dawn M. King |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1319259000 |
| authorships[5].affiliations[0].raw_affiliation_string | National Geospatial-Intelligence Agency, St. Louis, MO, USA |
| authorships[5].institutions[0].id | https://openalex.org/I1319259000 |
| authorships[5].institutions[0].ror | https://ror.org/02k4pxv54 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I1319259000, https://openalex.org/I1330347796 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | National Geospatial-Intelligence Agency |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Dawn King |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | National Geospatial-Intelligence Agency, St. Louis, MO, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/2441103 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity Anomalies |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11405 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1910 |
| primary_topic.subfield.display_name | Oceanography |
| primary_topic.display_name | Geophysics and Gravity Measurements |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:2441103 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/2441103 |
| primary_location.id | doi:10.1109/lgrs.2024.3441322 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S126920919 |
| primary_location.source.issn | 1545-598X, 1558-0571 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1545-598X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Geoscience and Remote Sensing Letters |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Geoscience and Remote Sensing Letters |
| primary_location.landing_page_url | http://doi.org/10.1109/lgrs.2024.3441322 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2554339061, https://openalex.org/W2907644757, https://openalex.org/W2028302194, https://openalex.org/W2900341572, https://openalex.org/W3040745608, https://openalex.org/W3206694203, https://openalex.org/W2998102549, https://openalex.org/W2053987409, https://openalex.org/W3048387442, https://openalex.org/W2912134286 |
| referenced_works_count | 10 |
| abstract_inverted_index.a | 57, 68, 86, 107, 166, 184 |
| abstract_inverted_index.By | 155 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 7 |
| abstract_inverted_index.as | 59, 183 |
| abstract_inverted_index.at | 117, 139 |
| abstract_inverted_index.by | 48 |
| abstract_inverted_index.in | 13, 62, 76, 193 |
| abstract_inverted_index.is | 56 |
| abstract_inverted_index.of | 32, 71, 110, 129, 172 |
| abstract_inverted_index.on | 103 |
| abstract_inverted_index.or | 53 |
| abstract_inverted_index.to | 17, 51, 66, 78, 135, 186 |
| abstract_inverted_index.us | 134 |
| abstract_inverted_index.we | 84, 146, 164 |
| abstract_inverted_index.The | 100, 123 |
| abstract_inverted_index.and | 20, 28, 38, 44, 89, 126, 137, 144, 161, 178, 191, 196 |
| abstract_inverted_index.can | 147 |
| abstract_inverted_index.due | 16 |
| abstract_inverted_index.for | 11, 93, 168 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.how | 72 |
| abstract_inverted_index.its | 18 |
| abstract_inverted_index.the | 23, 111, 157, 169, 188, 194 |
| abstract_inverted_index.also | 64 |
| abstract_inverted_index.data | 26, 121 |
| abstract_inverted_index.deep | 3, 33, 69 |
| abstract_inverted_index.from | 97 |
| abstract_inverted_index.have | 67 |
| abstract_inverted_index.here | 163 |
| abstract_inverted_index.into | 175 |
| abstract_inverted_index.make | 36 |
| abstract_inverted_index.need | 65 |
| abstract_inverted_index.this | 130, 142 |
| abstract_inverted_index.view | 109 |
| abstract_inverted_index.Here, | 83 |
| abstract_inverted_index.Using | 141 |
| abstract_inverted_index.aimed | 116 |
| abstract_inverted_index.allow | 133 |
| abstract_inverted_index.built | 102 |
| abstract_inverted_index.data. | 99 |
| abstract_inverted_index.means | 185 |
| abstract_inverted_index.model | 42 |
| abstract_inverted_index.order | 77 |
| abstract_inverted_index.their | 80 |
| abstract_inverted_index.these | 49 |
| abstract_inverted_index.those | 73 |
| abstract_inverted_index.users | 52 |
| abstract_inverted_index.become | 6 |
| abstract_inverted_index.domain | 54, 60 |
| abstract_inverted_index.models | 35, 50, 74 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.scale. | 140 |
| abstract_inverted_index.system | 132 |
| abstract_inverted_index.tuning | 30 |
| abstract_inverted_index.works. | 82 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.analyze | 138 |
| abstract_inverted_index.anomaly | 153 |
| abstract_inverted_index.broader | 170 |
| abstract_inverted_index.experts | 55, 61 |
| abstract_inverted_index.gateway | 88 |
| abstract_inverted_index.gravity | 95, 152 |
| abstract_inverted_index.improve | 187 |
| abstract_inverted_index.iterate | 136 |
| abstract_inverted_index.machine | 90, 179 |
| abstract_inverted_index.overall | 131 |
| abstract_inverted_index.popular | 9 |
| abstract_inverted_index.produce | 149 |
| abstract_inverted_index.provide | 165 |
| abstract_inverted_index.results | 46 |
| abstract_inverted_index.science | 87, 173 |
| abstract_inverted_index.support | 79 |
| abstract_inverted_index.through | 113 |
| abstract_inverted_index.volume, | 27 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.accurate | 150 |
| abstract_inverted_index.adoption | 171 |
| abstract_inverted_index.compute, | 25 |
| abstract_inverted_index.describe | 85 |
| abstract_inverted_index.enabling | 118 |
| abstract_inverted_index.function | 75 |
| abstract_inverted_index.gateway, | 101, 145 |
| abstract_inverted_index.gateways | 174 |
| abstract_inverted_index.holistic | 108 |
| abstract_inverted_index.learning | 4, 34, 91, 180 |
| abstract_inverted_index.modeling | 12 |
| abstract_inverted_index.obtained | 47 |
| abstract_inverted_index.pipeline | 92, 112, 143 |
| abstract_inverted_index.projects | 182 |
| abstract_inverted_index.provides | 106 |
| abstract_inverted_index.research | 181 |
| abstract_inverted_index.results, | 162 |
| abstract_inverted_index.sciences | 198 |
| abstract_inverted_index.analysis. | 122 |
| abstract_inverted_index.anomalies | 96 |
| abstract_inverted_index.datasets. | 154 |
| abstract_inverted_index.discovery | 190 |
| abstract_inverted_index.efficient | 119 |
| abstract_inverted_index.challenge, | 58 |
| abstract_inverted_index.community. | 199 |
| abstract_inverted_index.describing | 156 |
| abstract_inverted_index.difficult. | 40 |
| abstract_inverted_index.foundation | 167 |
| abstract_inverted_index.geophysics | 195 |
| abstract_inverted_index.geoscience | 14, 63, 177 |
| abstract_inverted_index.monitoring | 39, 127 |
| abstract_inverted_index.predicting | 94 |
| abstract_inverted_index.repeatedly | 148 |
| abstract_inverted_index.scientific | 81, 189 |
| abstract_inverted_index.underlying | 158 |
| abstract_inverted_index.alternative | 10 |
| abstract_inverted_index.development | 37 |
| abstract_inverted_index.efficiency. | 21 |
| abstract_inverted_index.exploratory | 120 |
| abstract_inverted_index.geophysical | 98 |
| abstract_inverted_index.interactive | 114 |
| abstract_inverted_index.open-source | 104 |
| abstract_inverted_index.scalability | 19 |
| abstract_inverted_index.Furthermore, | 41 |
| abstract_inverted_index.applications | 15 |
| abstract_inverted_index.capabilities | 128 |
| abstract_inverted_index.increasingly | 8 |
| abstract_inverted_index.requirements | 31 |
| abstract_inverted_index.collaboration | 192 |
| abstract_inverted_index.communicating | 45 |
| abstract_inverted_index.computational | 197 |
| abstract_inverted_index.cross-cutting | 176 |
| abstract_inverted_index.technologies, | 105, 159 |
| abstract_inverted_index.understanding | 70 |
| abstract_inverted_index.explainability | 43 |
| abstract_inverted_index.hyperparameter | 29 |
| abstract_inverted_index.repeatability, | 124 |
| abstract_inverted_index.visualizations | 115 |
| abstract_inverted_index.high-resolution | 151 |
| abstract_inverted_index.implementation, | 160 |
| abstract_inverted_index.reproducibility, | 125 |
| abstract_inverted_index.interpretability, | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.17074303 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |