A Self-organizing Interval Type-2 Fuzzy Neural Network for Multi-Step Time Series Prediction Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.08010
Data uncertainty is inherent in many real-world applications and poses significant challenges for accurate time series predictions. The interval type 2 fuzzy neural network (IT2FNN) has shown exceptional performance in uncertainty modelling for single-step prediction tasks. However, extending it for multi-step ahead predictions introduces further issues in uncertainty handling as well as model interpretability and accuracy. To address these issues, this paper proposes a new selforganizing interval type-2 fuzzy neural network with multiple outputs (SOIT2FNN-MO). Differing from the traditional six-layer IT2FNN, a nine-layer network architecture is developed. First, a new co-antecedent layer and a modified consequent layer are devised to improve the interpretability of the fuzzy model for multi-step time series prediction problems. Second, a new link layer is created to improve the accuracy by building temporal connections between multi-step predictions. Third, a new transformation layer is designed to address the problem of the vanishing rule strength caused by high-dimensional inputs. Furthermore, a two-stage, self-organizing learning mechanism is developed to automatically extract fuzzy rules from data and optimize network parameters. Experimental results on chaotic and microgrid prediction problems demonstrate that SOIT2FNN-MO outperforms state-of-the-art methods, by achieving a better accuracy ranging from 1.6% to 30% depending on the level of noises in data. Additionally, the proposed model is more interpretable, offering deeper insights into the prediction process.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.08010
- https://arxiv.org/pdf/2407.08010
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400611354
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400611354Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.08010Digital Object Identifier
- Title
-
A Self-organizing Interval Type-2 Fuzzy Neural Network for Multi-Step Time Series PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-10Full publication date if available
- Authors
-
Fulong Yao, Wanqing Zhao, Matthew Forshaw, Yang SongList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.08010Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.08010Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.08010Direct OA link when available
- Concepts
-
Artificial neural network, Series (stratigraphy), Interval (graph theory), Computer science, Time series, Type (biology), Artificial intelligence, Fuzzy logic, Mathematics, Machine learning, Paleontology, Biology, Combinatorics, EcologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400611354 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.08010 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.08010 |
| ids.openalex | https://openalex.org/W4400611354 |
| fwci | |
| type | preprint |
| title | A Self-organizing Interval Type-2 Fuzzy Neural Network for Multi-Step Time Series Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10820 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9800999760627747 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Fuzzy Logic and Control Systems |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9650999903678894 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T13717 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9462000131607056 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Advanced Algorithms and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.671358585357666 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C143724316 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6661437153816223 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[1].display_name | Series (stratigraphy) |
| concepts[2].id | https://openalex.org/C2778067643 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5531840324401855 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[2].display_name | Interval (graph theory) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5443285703659058 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C151406439 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5199509859085083 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[4].display_name | Time series |
| concepts[5].id | https://openalex.org/C2777299769 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5041419267654419 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3707858 |
| concepts[5].display_name | Type (biology) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4785497784614563 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C58166 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47250044345855713 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[7].display_name | Fuzzy logic |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2981693744659424 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.28105610609054565 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C151730666 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[10].display_name | Paleontology |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C114614502 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[12].display_name | Combinatorics |
| concepts[13].id | https://openalex.org/C18903297 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[13].display_name | Ecology |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.671358585357666 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/series |
| keywords[1].score | 0.6661437153816223 |
| keywords[1].display_name | Series (stratigraphy) |
| keywords[2].id | https://openalex.org/keywords/interval |
| keywords[2].score | 0.5531840324401855 |
| keywords[2].display_name | Interval (graph theory) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5443285703659058 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/time-series |
| keywords[4].score | 0.5199509859085083 |
| keywords[4].display_name | Time series |
| keywords[5].id | https://openalex.org/keywords/type |
| keywords[5].score | 0.5041419267654419 |
| keywords[5].display_name | Type (biology) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4785497784614563 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[7].score | 0.47250044345855713 |
| keywords[7].display_name | Fuzzy logic |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.2981693744659424 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.28105610609054565 |
| keywords[9].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.08010 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.08010 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.08010 |
| locations[1].id | doi:10.48550/arxiv.2407.08010 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.08010 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5062700378 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Fulong Yao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yao, Fulong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5066572238 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7622-0665 |
| authorships[1].author.display_name | Wanqing Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Wanqing |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049671608 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7014-9837 |
| authorships[2].author.display_name | Matthew Forshaw |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Forshaw, Matthew |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100688425 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7992-7233 |
| authorships[3].author.display_name | Yang Song |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Song, Yang |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.08010 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-07-14T00:00:00 |
| display_name | A Self-organizing Interval Type-2 Fuzzy Neural Network for Multi-Step Time Series Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10820 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9800999760627747 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Fuzzy Logic and Control Systems |
| related_works | https://openalex.org/W1919101720, https://openalex.org/W4390822878, https://openalex.org/W96888382, https://openalex.org/W2041308758, https://openalex.org/W4386126592, https://openalex.org/W4392529072, https://openalex.org/W4394131749, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.08010 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.08010 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.08010 |
| primary_location.id | pmh:oai:arXiv.org:2407.08010 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.08010 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.08010 |
| publication_date | 2024-07-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 20 |
| abstract_inverted_index.a | 63, 81, 88, 93, 114, 132, 152, 186 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.as | 49, 51 |
| abstract_inverted_index.by | 124, 148, 184 |
| abstract_inverted_index.in | 4, 29, 46, 200 |
| abstract_inverted_index.is | 2, 85, 118, 136, 157, 206 |
| abstract_inverted_index.it | 38 |
| abstract_inverted_index.of | 103, 142, 198 |
| abstract_inverted_index.on | 172, 195 |
| abstract_inverted_index.to | 99, 120, 138, 159, 192 |
| abstract_inverted_index.30% | 193 |
| abstract_inverted_index.The | 17 |
| abstract_inverted_index.and | 8, 54, 92, 166, 174 |
| abstract_inverted_index.are | 97 |
| abstract_inverted_index.for | 12, 32, 39, 107 |
| abstract_inverted_index.has | 25 |
| abstract_inverted_index.new | 64, 89, 115, 133 |
| abstract_inverted_index.the | 77, 101, 104, 122, 140, 143, 196, 203, 213 |
| abstract_inverted_index.1.6% | 191 |
| abstract_inverted_index.Data | 0 |
| abstract_inverted_index.data | 165 |
| abstract_inverted_index.from | 76, 164, 190 |
| abstract_inverted_index.into | 212 |
| abstract_inverted_index.link | 116 |
| abstract_inverted_index.many | 5 |
| abstract_inverted_index.more | 207 |
| abstract_inverted_index.rule | 145 |
| abstract_inverted_index.that | 179 |
| abstract_inverted_index.this | 60 |
| abstract_inverted_index.time | 14, 109 |
| abstract_inverted_index.type | 19 |
| abstract_inverted_index.well | 50 |
| abstract_inverted_index.with | 71 |
| abstract_inverted_index.ahead | 41 |
| abstract_inverted_index.data. | 201 |
| abstract_inverted_index.fuzzy | 21, 68, 105, 162 |
| abstract_inverted_index.layer | 91, 96, 117, 135 |
| abstract_inverted_index.level | 197 |
| abstract_inverted_index.model | 52, 106, 205 |
| abstract_inverted_index.paper | 61 |
| abstract_inverted_index.poses | 9 |
| abstract_inverted_index.rules | 163 |
| abstract_inverted_index.shown | 26 |
| abstract_inverted_index.these | 58 |
| abstract_inverted_index.First, | 87 |
| abstract_inverted_index.Third, | 131 |
| abstract_inverted_index.better | 187 |
| abstract_inverted_index.caused | 147 |
| abstract_inverted_index.deeper | 210 |
| abstract_inverted_index.issues | 45 |
| abstract_inverted_index.neural | 22, 69 |
| abstract_inverted_index.noises | 199 |
| abstract_inverted_index.series | 15, 110 |
| abstract_inverted_index.tasks. | 35 |
| abstract_inverted_index.type-2 | 67 |
| abstract_inverted_index.IT2FNN, | 80 |
| abstract_inverted_index.Second, | 113 |
| abstract_inverted_index.address | 57, 139 |
| abstract_inverted_index.between | 128 |
| abstract_inverted_index.chaotic | 173 |
| abstract_inverted_index.created | 119 |
| abstract_inverted_index.devised | 98 |
| abstract_inverted_index.extract | 161 |
| abstract_inverted_index.further | 44 |
| abstract_inverted_index.improve | 100, 121 |
| abstract_inverted_index.inputs. | 150 |
| abstract_inverted_index.issues, | 59 |
| abstract_inverted_index.network | 23, 70, 83, 168 |
| abstract_inverted_index.outputs | 73 |
| abstract_inverted_index.problem | 141 |
| abstract_inverted_index.ranging | 189 |
| abstract_inverted_index.results | 171 |
| abstract_inverted_index.(IT2FNN) | 24 |
| abstract_inverted_index.However, | 36 |
| abstract_inverted_index.accuracy | 123, 188 |
| abstract_inverted_index.accurate | 13 |
| abstract_inverted_index.building | 125 |
| abstract_inverted_index.designed | 137 |
| abstract_inverted_index.handling | 48 |
| abstract_inverted_index.inherent | 3 |
| abstract_inverted_index.insights | 211 |
| abstract_inverted_index.interval | 18, 66 |
| abstract_inverted_index.learning | 155 |
| abstract_inverted_index.methods, | 183 |
| abstract_inverted_index.modified | 94 |
| abstract_inverted_index.multiple | 72 |
| abstract_inverted_index.offering | 209 |
| abstract_inverted_index.optimize | 167 |
| abstract_inverted_index.problems | 177 |
| abstract_inverted_index.process. | 215 |
| abstract_inverted_index.proposed | 204 |
| abstract_inverted_index.proposes | 62 |
| abstract_inverted_index.strength | 146 |
| abstract_inverted_index.temporal | 126 |
| abstract_inverted_index.Differing | 75 |
| abstract_inverted_index.accuracy. | 55 |
| abstract_inverted_index.achieving | 185 |
| abstract_inverted_index.depending | 194 |
| abstract_inverted_index.developed | 158 |
| abstract_inverted_index.extending | 37 |
| abstract_inverted_index.mechanism | 156 |
| abstract_inverted_index.microgrid | 175 |
| abstract_inverted_index.modelling | 31 |
| abstract_inverted_index.problems. | 112 |
| abstract_inverted_index.six-layer | 79 |
| abstract_inverted_index.vanishing | 144 |
| abstract_inverted_index.challenges | 11 |
| abstract_inverted_index.consequent | 95 |
| abstract_inverted_index.developed. | 86 |
| abstract_inverted_index.introduces | 43 |
| abstract_inverted_index.multi-step | 40, 108, 129 |
| abstract_inverted_index.nine-layer | 82 |
| abstract_inverted_index.prediction | 34, 111, 176, 214 |
| abstract_inverted_index.real-world | 6 |
| abstract_inverted_index.two-stage, | 153 |
| abstract_inverted_index.SOIT2FNN-MO | 180 |
| abstract_inverted_index.connections | 127 |
| abstract_inverted_index.demonstrate | 178 |
| abstract_inverted_index.exceptional | 27 |
| abstract_inverted_index.outperforms | 181 |
| abstract_inverted_index.parameters. | 169 |
| abstract_inverted_index.performance | 28 |
| abstract_inverted_index.predictions | 42 |
| abstract_inverted_index.significant | 10 |
| abstract_inverted_index.single-step | 33 |
| abstract_inverted_index.traditional | 78 |
| abstract_inverted_index.uncertainty | 1, 30, 47 |
| abstract_inverted_index.Experimental | 170 |
| abstract_inverted_index.Furthermore, | 151 |
| abstract_inverted_index.applications | 7 |
| abstract_inverted_index.architecture | 84 |
| abstract_inverted_index.predictions. | 16, 130 |
| abstract_inverted_index.Additionally, | 202 |
| abstract_inverted_index.automatically | 160 |
| abstract_inverted_index.co-antecedent | 90 |
| abstract_inverted_index.(SOIT2FNN-MO). | 74 |
| abstract_inverted_index.interpretable, | 208 |
| abstract_inverted_index.selforganizing | 65 |
| abstract_inverted_index.transformation | 134 |
| abstract_inverted_index.self-organizing | 154 |
| abstract_inverted_index.high-dimensional | 149 |
| abstract_inverted_index.interpretability | 53, 102 |
| abstract_inverted_index.state-of-the-art | 182 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |