A semi-automated segmentation method for detection of pulmonary embolism in True-FISP MRI sequences Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1709.07993
Pulmonary embolism (PE) is a highly mortal disease, currently assessed by pulmonary CT angiography. True-FISP MRI has emerged as an innocuous alternative that does not hold many of the limitations of x-ray imaging. However, True-FISP MRI is very sensitive to turbulent blood flow, generating artifacts that may resemble fake clots in the pulmonary vasculature. These misinterpretations reduce its overall diagnostic accuracy to 94%, limiting a wider use in clinical environments. A new segmentation algorithm is proposed to confirm the presence of real pulmonary clots in True-FISP MR images by quantitative means, measuring the shape, intensity, and solidity of the formation. The algorithm was evaluated in 37 patients. The developed method increased the diagnostic accuracy of expert observers assessing Pulmonary True-FISP MRI sequences by 6% without the use of ionizing radiation, achieving a diagnostic accuracy comparable to standard CT angiography.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1709.07993
- https://arxiv.org/pdf/1709.07993
- OA Status
- green
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2756551947
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2756551947Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1709.07993Digital Object Identifier
- Title
-
A semi-automated segmentation method for detection of pulmonary embolism in True-FISP MRI sequencesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-09-23Full publication date if available
- Authors
-
Luis R. Soenksen, Luis Jiménez-Ángeles, Gabriela Meléndez, Aloha MeaveList of authors in order
- Landing page
-
https://arxiv.org/abs/1709.07993Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1709.07993Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1709.07993Direct OA link when available
- Concepts
-
Segmentation, Artificial intelligence, Pulmonary embolism, Computer vision, Computer science, Radiology, Pattern recognition (psychology), Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2756551947 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1709.07993 |
| ids.doi | https://doi.org/10.48550/arxiv.1709.07993 |
| ids.mag | 2756551947 |
| ids.openalex | https://openalex.org/W2756551947 |
| fwci | |
| type | preprint |
| title | A semi-automated segmentation method for detection of pulmonary embolism in True-FISP MRI sequences |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10285 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2724 |
| topics[0].subfield.display_name | Internal Medicine |
| topics[0].display_name | Venous Thromboembolism Diagnosis and Management |
| topics[1].id | https://openalex.org/T10372 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Cardiac Imaging and Diagnostics |
| topics[2].id | https://openalex.org/T11738 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.98580002784729 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2706 |
| topics[2].subfield.display_name | Critical Care and Intensive Care Medicine |
| topics[2].display_name | Ultrasound in Clinical Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7010945081710815 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6664389371871948 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2776265017 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6341710090637207 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q220570 |
| concepts[2].display_name | Pulmonary embolism |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5410259366035461 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.48211050033569336 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C126838900 |
| concepts[5].level | 1 |
| concepts[5].score | 0.44823214411735535 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[5].display_name | Radiology |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44285085797309875 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.281424880027771 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C126322002 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1375364065170288 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[8].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7010945081710815 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6664389371871948 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pulmonary-embolism |
| keywords[2].score | 0.6341710090637207 |
| keywords[2].display_name | Pulmonary embolism |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.5410259366035461 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.48211050033569336 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/radiology |
| keywords[5].score | 0.44823214411735535 |
| keywords[5].display_name | Radiology |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.44285085797309875 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.281424880027771 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/internal-medicine |
| keywords[8].score | 0.1375364065170288 |
| keywords[8].display_name | Internal medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1709.07993 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1709.07993 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1709.07993 |
| locations[1].id | doi:10.48550/arxiv.1709.07993 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1709.07993 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5021715576 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7890-7209 |
| authorships[0].author.display_name | Luis R. Soenksen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Luis R Soenksen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5089705855 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7390-0814 |
| authorships[1].author.display_name | Luis Jiménez-Ángeles |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luis Jiménez-Angeles |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016340915 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4304-2967 |
| authorships[2].author.display_name | Gabriela Meléndez |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gabriela Melendez |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5111603281 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Aloha Meave |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Aloha Meave |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1709.07993 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A semi-automated segmentation method for detection of pulmonary embolism in True-FISP MRI sequences |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10285 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2724 |
| primary_topic.subfield.display_name | Internal Medicine |
| primary_topic.display_name | Venous Thromboembolism Diagnosis and Management |
| related_works | https://openalex.org/W2022759977, https://openalex.org/W4300123192, https://openalex.org/W2046115409, https://openalex.org/W3163402063, https://openalex.org/W2943577220, https://openalex.org/W3030382460, https://openalex.org/W2039328399, https://openalex.org/W1992938878, https://openalex.org/W2403684205, https://openalex.org/W2167167265 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1709.07993 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1709.07993 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1709.07993 |
| primary_location.id | pmh:oai:arXiv.org:1709.07993 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1709.07993 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1709.07993 |
| publication_date | 2017-09-23 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W1911450691, https://openalex.org/W2164307278, https://openalex.org/W2170895915, https://openalex.org/W2171812388, https://openalex.org/W2171447203, https://openalex.org/W2096669156, https://openalex.org/W2115055475, https://openalex.org/W2105877140, https://openalex.org/W2002680405, https://openalex.org/W2110372289, https://openalex.org/W1977653697, https://openalex.org/W2064562336, https://openalex.org/W2015255818, https://openalex.org/W2024396349, https://openalex.org/W2170419612, https://openalex.org/W2088216624, https://openalex.org/W2066744295, https://openalex.org/W2109847324, https://openalex.org/W2125849357 |
| referenced_works_count | 19 |
| abstract_inverted_index.A | 70 |
| abstract_inverted_index.a | 4, 64, 131 |
| abstract_inverted_index.37 | 105 |
| abstract_inverted_index.6% | 123 |
| abstract_inverted_index.CT | 12, 137 |
| abstract_inverted_index.MR | 86 |
| abstract_inverted_index.an | 19 |
| abstract_inverted_index.as | 18 |
| abstract_inverted_index.by | 10, 88, 122 |
| abstract_inverted_index.in | 50, 67, 84, 104 |
| abstract_inverted_index.is | 3, 36, 74 |
| abstract_inverted_index.of | 27, 30, 80, 97, 114, 127 |
| abstract_inverted_index.to | 39, 61, 76, 135 |
| abstract_inverted_index.MRI | 15, 35, 120 |
| abstract_inverted_index.The | 100, 107 |
| abstract_inverted_index.and | 95 |
| abstract_inverted_index.has | 16 |
| abstract_inverted_index.its | 57 |
| abstract_inverted_index.may | 46 |
| abstract_inverted_index.new | 71 |
| abstract_inverted_index.not | 24 |
| abstract_inverted_index.the | 28, 51, 78, 92, 98, 111, 125 |
| abstract_inverted_index.use | 66, 126 |
| abstract_inverted_index.was | 102 |
| abstract_inverted_index.(PE) | 2 |
| abstract_inverted_index.94%, | 62 |
| abstract_inverted_index.does | 23 |
| abstract_inverted_index.fake | 48 |
| abstract_inverted_index.hold | 25 |
| abstract_inverted_index.many | 26 |
| abstract_inverted_index.real | 81 |
| abstract_inverted_index.that | 22, 45 |
| abstract_inverted_index.very | 37 |
| abstract_inverted_index.These | 54 |
| abstract_inverted_index.blood | 41 |
| abstract_inverted_index.clots | 49, 83 |
| abstract_inverted_index.flow, | 42 |
| abstract_inverted_index.wider | 65 |
| abstract_inverted_index.x-ray | 31 |
| abstract_inverted_index.expert | 115 |
| abstract_inverted_index.highly | 5 |
| abstract_inverted_index.images | 87 |
| abstract_inverted_index.means, | 90 |
| abstract_inverted_index.method | 109 |
| abstract_inverted_index.mortal | 6 |
| abstract_inverted_index.reduce | 56 |
| abstract_inverted_index.shape, | 93 |
| abstract_inverted_index.confirm | 77 |
| abstract_inverted_index.emerged | 17 |
| abstract_inverted_index.overall | 58 |
| abstract_inverted_index.without | 124 |
| abstract_inverted_index.However, | 33 |
| abstract_inverted_index.accuracy | 60, 113, 133 |
| abstract_inverted_index.assessed | 9 |
| abstract_inverted_index.clinical | 68 |
| abstract_inverted_index.disease, | 7 |
| abstract_inverted_index.embolism | 1 |
| abstract_inverted_index.imaging. | 32 |
| abstract_inverted_index.ionizing | 128 |
| abstract_inverted_index.limiting | 63 |
| abstract_inverted_index.presence | 79 |
| abstract_inverted_index.proposed | 75 |
| abstract_inverted_index.resemble | 47 |
| abstract_inverted_index.solidity | 96 |
| abstract_inverted_index.standard | 136 |
| abstract_inverted_index.Pulmonary | 0, 118 |
| abstract_inverted_index.True-FISP | 14, 34, 85, 119 |
| abstract_inverted_index.achieving | 130 |
| abstract_inverted_index.algorithm | 73, 101 |
| abstract_inverted_index.artifacts | 44 |
| abstract_inverted_index.assessing | 117 |
| abstract_inverted_index.currently | 8 |
| abstract_inverted_index.developed | 108 |
| abstract_inverted_index.evaluated | 103 |
| abstract_inverted_index.increased | 110 |
| abstract_inverted_index.innocuous | 20 |
| abstract_inverted_index.measuring | 91 |
| abstract_inverted_index.observers | 116 |
| abstract_inverted_index.patients. | 106 |
| abstract_inverted_index.pulmonary | 11, 52, 82 |
| abstract_inverted_index.sensitive | 38 |
| abstract_inverted_index.sequences | 121 |
| abstract_inverted_index.turbulent | 40 |
| abstract_inverted_index.comparable | 134 |
| abstract_inverted_index.diagnostic | 59, 112, 132 |
| abstract_inverted_index.formation. | 99 |
| abstract_inverted_index.generating | 43 |
| abstract_inverted_index.intensity, | 94 |
| abstract_inverted_index.radiation, | 129 |
| abstract_inverted_index.alternative | 21 |
| abstract_inverted_index.limitations | 29 |
| abstract_inverted_index.angiography. | 13, 138 |
| abstract_inverted_index.quantitative | 89 |
| abstract_inverted_index.segmentation | 72 |
| abstract_inverted_index.vasculature. | 53 |
| abstract_inverted_index.environments. | 69 |
| abstract_inverted_index.misinterpretations | 55 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |