A Semi-Smooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1802.08895
The smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP) penalized regression models are two important and widely used nonconvex sparse learning tools that can handle variable selection and parameter estimation simultaneously, and thus have potential applications in various fields such as mining biological data in high-throughput biomedical studies. Theoretically, these two models enjoy the oracle property even in the high-dimensional settings, where the number of predictors $p$ may be much larger than the number of observations $n$. However, numerically, it is quite challenging to develop fast and stable algorithms due to their non-convexity and non-smoothness. In this paper we develop a fast algorithm for SCAD and MCP penalized learning problems. First, we show that the global minimizers of both models are roots of the nonsmooth equations. Then, a semi-smooth Newton (SSN) algorithm is employed to solve the equations. We prove that the SSN algorithm converges locally and superlinearly to the Karush-Kuhn-Tucker (KKT) points. Computational complexity analysis shows that the cost of the SSN algorithm per iteration is $O(np)$. Combined with the warm-start technique, the SSN algorithm can be very efficient and accurate. Simulation studies and a real data example suggest that our SSN algorithm, with comparable solution accuracy with the coordinate descent (CD) and the difference of convex (DC) proximal Newton algorithms, is more computationally efficient.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1802.08895
- https://arxiv.org/pdf/1802.08895
- OA Status
- green
- Cited By
- 1
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2961610406
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2961610406Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1802.08895Digital Object Identifier
- Title
-
A Semi-Smooth Newton Algorithm for High-Dimensional Nonconvex Sparse LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-02-24Full publication date if available
- Authors
-
Yueyong Shi, Jian Huang, Yuling Jiao, Qinglong YangList of authors in order
- Landing page
-
https://arxiv.org/abs/1802.08895Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1802.08895Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1802.08895Direct OA link when available
- Concepts
-
Coordinate descent, Karush–Kuhn–Tucker conditions, Smoothness, Algorithm, Mathematics, Minimax, Convexity, Convergence (economics), Mathematical optimization, Scad, Newton's method, Regular polygon, Feature selection, Computer science, Applied mathematics, Nonlinear system, Artificial intelligence, Mathematical analysis, Economics, Financial economics, Quantum mechanics, Physics, Psychiatry, Myocardial infarction, Economic growth, Geometry, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 1Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2961610406 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1802.08895 |
| ids.doi | https://doi.org/10.48550/arxiv.1802.08895 |
| ids.mag | 2961610406 |
| ids.openalex | https://openalex.org/W2961610406 |
| fwci | |
| type | preprint |
| title | A Semi-Smooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T11236 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9922999739646912 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Control Systems and Identification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C157553263 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7695891261100769 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5168004 |
| concepts[0].display_name | Coordinate descent |
| concepts[1].id | https://openalex.org/C50454189 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7331806421279907 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2075125 |
| concepts[1].display_name | Karush–Kuhn–Tucker conditions |
| concepts[2].id | https://openalex.org/C102634674 |
| concepts[2].level | 2 |
| concepts[2].score | 0.705274224281311 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q868473 |
| concepts[2].display_name | Smoothness |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6786656379699707 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5338094830513 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C149728462 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5203606486320496 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q751319 |
| concepts[5].display_name | Minimax |
| concepts[6].id | https://openalex.org/C72134830 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48073744773864746 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5166524 |
| concepts[6].display_name | Convexity |
| concepts[7].id | https://openalex.org/C2777303404 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46612927317619324 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[7].display_name | Convergence (economics) |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4656793475151062 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C2776857174 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4594181180000305 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7429613 |
| concepts[9].display_name | Scad |
| concepts[10].id | https://openalex.org/C85189116 |
| concepts[10].level | 3 |
| concepts[10].score | 0.424386590719223 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q374195 |
| concepts[10].display_name | Newton's method |
| concepts[11].id | https://openalex.org/C112680207 |
| concepts[11].level | 2 |
| concepts[11].score | 0.424360990524292 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q714886 |
| concepts[11].display_name | Regular polygon |
| concepts[12].id | https://openalex.org/C148483581 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4213506877422333 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[12].display_name | Feature selection |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.37955915927886963 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C28826006 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3582186698913574 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[14].display_name | Applied mathematics |
| concepts[15].id | https://openalex.org/C158622935 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2382892370223999 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[15].display_name | Nonlinear system |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.15332186222076416 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C106159729 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[19].display_name | Financial economics |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C118552586 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[22].display_name | Psychiatry |
| concepts[23].id | https://openalex.org/C500558357 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q12152 |
| concepts[23].display_name | Myocardial infarction |
| concepts[24].id | https://openalex.org/C50522688 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[24].display_name | Economic growth |
| concepts[25].id | https://openalex.org/C2524010 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[25].display_name | Geometry |
| concepts[26].id | https://openalex.org/C15744967 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[26].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/coordinate-descent |
| keywords[0].score | 0.7695891261100769 |
| keywords[0].display_name | Coordinate descent |
| keywords[1].id | https://openalex.org/keywords/karush–kuhn–tucker-conditions |
| keywords[1].score | 0.7331806421279907 |
| keywords[1].display_name | Karush–Kuhn–Tucker conditions |
| keywords[2].id | https://openalex.org/keywords/smoothness |
| keywords[2].score | 0.705274224281311 |
| keywords[2].display_name | Smoothness |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.6786656379699707 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.5338094830513 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/minimax |
| keywords[5].score | 0.5203606486320496 |
| keywords[5].display_name | Minimax |
| keywords[6].id | https://openalex.org/keywords/convexity |
| keywords[6].score | 0.48073744773864746 |
| keywords[6].display_name | Convexity |
| keywords[7].id | https://openalex.org/keywords/convergence |
| keywords[7].score | 0.46612927317619324 |
| keywords[7].display_name | Convergence (economics) |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.4656793475151062 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/scad |
| keywords[9].score | 0.4594181180000305 |
| keywords[9].display_name | Scad |
| keywords[10].id | https://openalex.org/keywords/newtons-method |
| keywords[10].score | 0.424386590719223 |
| keywords[10].display_name | Newton's method |
| keywords[11].id | https://openalex.org/keywords/regular-polygon |
| keywords[11].score | 0.424360990524292 |
| keywords[11].display_name | Regular polygon |
| keywords[12].id | https://openalex.org/keywords/feature-selection |
| keywords[12].score | 0.4213506877422333 |
| keywords[12].display_name | Feature selection |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.37955915927886963 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/applied-mathematics |
| keywords[14].score | 0.3582186698913574 |
| keywords[14].display_name | Applied mathematics |
| keywords[15].id | https://openalex.org/keywords/nonlinear-system |
| keywords[15].score | 0.2382892370223999 |
| keywords[15].display_name | Nonlinear system |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.15332186222076416 |
| keywords[16].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1802.08895 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1802.08895 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1802.08895 |
| locations[1].id | doi:10.48550/arxiv.1802.08895 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1802.08895 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083578298 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7419-8337 |
| authorships[0].author.display_name | Yueyong Shi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yueyong Shi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012067697 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5218-9269 |
| authorships[1].author.display_name | Jian Huang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jian Huang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5080185313 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2762-0421 |
| authorships[2].author.display_name | Yuling Jiao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuling Jiao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5110366401 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Qinglong Yang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Qinglong Yang |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1802.08895 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-07-23T00:00:00 |
| display_name | A Semi-Smooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W2155858901, https://openalex.org/W4382519099, https://openalex.org/W2491194410, https://openalex.org/W1515727993, https://openalex.org/W2037179686, https://openalex.org/W2802398440, https://openalex.org/W2085074295, https://openalex.org/W2289207566, https://openalex.org/W2109622866, https://openalex.org/W2387058857 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1802.08895 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1802.08895 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1802.08895 |
| primary_location.id | pmh:oai:arXiv.org:1802.08895 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1802.08895 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1802.08895 |
| publication_date | 2018-02-24 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2894278606, https://openalex.org/W2166956514, https://openalex.org/W1540764732, https://openalex.org/W2906787096, https://openalex.org/W1968480053, https://openalex.org/W2171998255, https://openalex.org/W2232588526, https://openalex.org/W2078204800, https://openalex.org/W1965125844, https://openalex.org/W2102760656, https://openalex.org/W3100208521, https://openalex.org/W2963231446, https://openalex.org/W3105034597, https://openalex.org/W2783376202, https://openalex.org/W2523909829, https://openalex.org/W3100058837, https://openalex.org/W1967759264, https://openalex.org/W2087003257, https://openalex.org/W3124114587, https://openalex.org/W2100556411, https://openalex.org/W1965169081, https://openalex.org/W1560867458, https://openalex.org/W3100041486, https://openalex.org/W2792312242, https://openalex.org/W2028781966, https://openalex.org/W2150940164, https://openalex.org/W1996515169, https://openalex.org/W3098834468, https://openalex.org/W2062102668, https://openalex.org/W2056636001, https://openalex.org/W2963828549, https://openalex.org/W1554944419, https://openalex.org/W2768956845, https://openalex.org/W2773043772, https://openalex.org/W3105543546, https://openalex.org/W2963839997, https://openalex.org/W1579781026, https://openalex.org/W2074682976, https://openalex.org/W2097360283, https://openalex.org/W2912848192, https://openalex.org/W2020925091, https://openalex.org/W388179047, https://openalex.org/W3154413294, https://openalex.org/W2751109066, https://openalex.org/W2063978378, https://openalex.org/W1992688650, https://openalex.org/W2460144244, https://openalex.org/W3124158594, https://openalex.org/W3106108064, https://openalex.org/W2079724595, https://openalex.org/W2135046866, https://openalex.org/W2963994662, https://openalex.org/W2013916391, https://openalex.org/W2787511900, https://openalex.org/W2129131372 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 103, 130, 188 |
| abstract_inverted_index.In | 98 |
| abstract_inverted_index.We | 141 |
| abstract_inverted_index.as | 43 |
| abstract_inverted_index.be | 71, 180 |
| abstract_inverted_index.in | 39, 47, 60 |
| abstract_inverted_index.is | 83, 135, 169, 215 |
| abstract_inverted_index.it | 82 |
| abstract_inverted_index.of | 67, 77, 120, 125, 163, 209 |
| abstract_inverted_index.to | 86, 93, 137, 151 |
| abstract_inverted_index.we | 101, 114 |
| abstract_inverted_index.$p$ | 69 |
| abstract_inverted_index.MCP | 109 |
| abstract_inverted_index.SSN | 145, 165, 177, 195 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 6, 18, 30, 34, 89, 96, 108, 149, 183, 187, 206 |
| abstract_inverted_index.are | 15, 123 |
| abstract_inverted_index.can | 26, 179 |
| abstract_inverted_index.due | 92 |
| abstract_inverted_index.for | 106 |
| abstract_inverted_index.may | 70 |
| abstract_inverted_index.our | 194 |
| abstract_inverted_index.per | 167 |
| abstract_inverted_index.the | 7, 56, 61, 65, 75, 117, 126, 139, 144, 152, 161, 164, 173, 176, 202, 207 |
| abstract_inverted_index.two | 16, 53 |
| abstract_inverted_index.$n$. | 79 |
| abstract_inverted_index.(CD) | 205 |
| abstract_inverted_index.(DC) | 211 |
| abstract_inverted_index.SCAD | 107 |
| abstract_inverted_index.both | 121 |
| abstract_inverted_index.cost | 162 |
| abstract_inverted_index.data | 46, 190 |
| abstract_inverted_index.even | 59 |
| abstract_inverted_index.fast | 88, 104 |
| abstract_inverted_index.have | 36 |
| abstract_inverted_index.more | 216 |
| abstract_inverted_index.much | 72 |
| abstract_inverted_index.real | 189 |
| abstract_inverted_index.show | 115 |
| abstract_inverted_index.such | 42 |
| abstract_inverted_index.than | 74 |
| abstract_inverted_index.that | 25, 116, 143, 160, 193 |
| abstract_inverted_index.this | 99 |
| abstract_inverted_index.thus | 35 |
| abstract_inverted_index.used | 20 |
| abstract_inverted_index.very | 181 |
| abstract_inverted_index.with | 172, 197, 201 |
| abstract_inverted_index.(KKT) | 154 |
| abstract_inverted_index.(MCP) | 11 |
| abstract_inverted_index.(SSN) | 133 |
| abstract_inverted_index.Then, | 129 |
| abstract_inverted_index.enjoy | 55 |
| abstract_inverted_index.paper | 100 |
| abstract_inverted_index.prove | 142 |
| abstract_inverted_index.quite | 84 |
| abstract_inverted_index.roots | 124 |
| abstract_inverted_index.shows | 159 |
| abstract_inverted_index.solve | 138 |
| abstract_inverted_index.their | 94 |
| abstract_inverted_index.these | 52 |
| abstract_inverted_index.tools | 24 |
| abstract_inverted_index.where | 64 |
| abstract_inverted_index.(SCAD) | 5 |
| abstract_inverted_index.First, | 113 |
| abstract_inverted_index.Newton | 132, 213 |
| abstract_inverted_index.convex | 210 |
| abstract_inverted_index.fields | 41 |
| abstract_inverted_index.global | 118 |
| abstract_inverted_index.handle | 27 |
| abstract_inverted_index.larger | 73 |
| abstract_inverted_index.mining | 44 |
| abstract_inverted_index.models | 14, 54, 122 |
| abstract_inverted_index.number | 66, 76 |
| abstract_inverted_index.oracle | 57 |
| abstract_inverted_index.sparse | 22 |
| abstract_inverted_index.stable | 90 |
| abstract_inverted_index.widely | 19 |
| abstract_inverted_index.clipped | 2 |
| abstract_inverted_index.concave | 9 |
| abstract_inverted_index.descent | 204 |
| abstract_inverted_index.develop | 87, 102 |
| abstract_inverted_index.example | 191 |
| abstract_inverted_index.locally | 148 |
| abstract_inverted_index.minimax | 8 |
| abstract_inverted_index.penalty | 10 |
| abstract_inverted_index.points. | 155 |
| abstract_inverted_index.studies | 186 |
| abstract_inverted_index.suggest | 192 |
| abstract_inverted_index.various | 40 |
| abstract_inverted_index.$O(np)$. | 170 |
| abstract_inverted_index.Combined | 171 |
| abstract_inverted_index.However, | 80 |
| abstract_inverted_index.absolute | 3 |
| abstract_inverted_index.accuracy | 200 |
| abstract_inverted_index.analysis | 158 |
| abstract_inverted_index.employed | 136 |
| abstract_inverted_index.learning | 23, 111 |
| abstract_inverted_index.property | 58 |
| abstract_inverted_index.proximal | 212 |
| abstract_inverted_index.smoothly | 1 |
| abstract_inverted_index.solution | 199 |
| abstract_inverted_index.studies. | 50 |
| abstract_inverted_index.variable | 28 |
| abstract_inverted_index.accurate. | 184 |
| abstract_inverted_index.algorithm | 105, 134, 146, 166, 178 |
| abstract_inverted_index.converges | 147 |
| abstract_inverted_index.deviation | 4 |
| abstract_inverted_index.efficient | 182 |
| abstract_inverted_index.important | 17 |
| abstract_inverted_index.iteration | 168 |
| abstract_inverted_index.nonconvex | 21 |
| abstract_inverted_index.nonsmooth | 127 |
| abstract_inverted_index.parameter | 31 |
| abstract_inverted_index.penalized | 12, 110 |
| abstract_inverted_index.potential | 37 |
| abstract_inverted_index.problems. | 112 |
| abstract_inverted_index.selection | 29 |
| abstract_inverted_index.settings, | 63 |
| abstract_inverted_index.Simulation | 185 |
| abstract_inverted_index.algorithm, | 196 |
| abstract_inverted_index.algorithms | 91 |
| abstract_inverted_index.biological | 45 |
| abstract_inverted_index.biomedical | 49 |
| abstract_inverted_index.comparable | 198 |
| abstract_inverted_index.complexity | 157 |
| abstract_inverted_index.coordinate | 203 |
| abstract_inverted_index.difference | 208 |
| abstract_inverted_index.efficient. | 218 |
| abstract_inverted_index.equations. | 128, 140 |
| abstract_inverted_index.estimation | 32 |
| abstract_inverted_index.minimizers | 119 |
| abstract_inverted_index.predictors | 68 |
| abstract_inverted_index.regression | 13 |
| abstract_inverted_index.technique, | 175 |
| abstract_inverted_index.warm-start | 174 |
| abstract_inverted_index.algorithms, | 214 |
| abstract_inverted_index.challenging | 85 |
| abstract_inverted_index.semi-smooth | 131 |
| abstract_inverted_index.applications | 38 |
| abstract_inverted_index.numerically, | 81 |
| abstract_inverted_index.observations | 78 |
| abstract_inverted_index.Computational | 156 |
| abstract_inverted_index.non-convexity | 95 |
| abstract_inverted_index.superlinearly | 150 |
| abstract_inverted_index.Theoretically, | 51 |
| abstract_inverted_index.computationally | 217 |
| abstract_inverted_index.high-throughput | 48 |
| abstract_inverted_index.non-smoothness. | 97 |
| abstract_inverted_index.simultaneously, | 33 |
| abstract_inverted_index.high-dimensional | 62 |
| abstract_inverted_index.Karush-Kuhn-Tucker | 153 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |