A Semianalytical Algorithm for Estimating Water Transparency in Different Optical Water Types from MERIS Data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14040868
Water transparency (or Secchi disk depth: ZSD) is a key parameter of water quality; thus, it is very important to routinely monitor. In this study, we made four efforts to improve a state-of-the-art ZSD estimation algorithm that was developed in 2019 on the basis of a new underwater visibility theory proposed in 2015. The four efforts were: (1) classifying all water into clear (Type I), moderately turbid (Type II), highly turbid (Type III), or extremely turbid (Type IV) water types; (2) selecting different reference wavelengths and corresponding semianalytical models for each water type; (3) employing an estimation model to represent reasonable shapes for particulate backscattering coefficients based on the water type classification; and (4) constraining likely wavelength range at which the minimum diffuse attenuation coefficient (Kd(λ)) will occur for each water type. The performance of the proposed ZSD estimation algorithm was compared to that of the original state-of-the-art algorithm using a simulated dataset (N = 91,287, ZSD values 0.01 to 44.68 m) and an in situ measured dataset (N = 305, ZSD values 0.3 to 16.4 m). The results showed a significant improvement with a reduced mean absolute percentage error (MAPE) from 116% to 65% for simulated data and from 32% to 27% for in situ data. Outliers in the previous algorithm were well addressed in the new algorithm. We further evaluated the developed ZSD estimation algorithm using medium resolution imaging spectrometer (MERIS) images acquired from Lake Kasumigaura, Japan. The results obtained from 19 matchups revealed that the estimated ZSD matched well with the in situ measured ZSD, with a MAPE of 15%. The developed ZSD estimation algorithm can probably be applied to different optical water types due to its semianalytical features.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14040868
- https://www.mdpi.com/2072-4292/14/4/868/pdf?version=1644993720
- OA Status
- gold
- Cited By
- 6
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4213227573
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4213227573Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14040868Digital Object Identifier
- Title
-
A Semianalytical Algorithm for Estimating Water Transparency in Different Optical Water Types from MERIS DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-11Full publication date if available
- Authors
-
Anastazia Daniel Msusa, Dalin Jiang, Bunkei MatsushitaList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14040868Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/4/868/pdf?version=1644993720Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/4/868/pdf?version=1644993720Direct OA link when available
- Concepts
-
Visibility, Remote sensing, Algorithm, Underwater, Outlier, Secchi disk, Environmental science, Imaging spectrometer, Wavelength, Attenuation coefficient, Attenuation, Water quality, Spectrometer, Computer science, Mathematics, Statistics, Optics, Physics, Geology, Chemistry, Eutrophication, Ecology, Oceanography, Nutrient, Biology, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4213227573 |
|---|---|
| doi | https://doi.org/10.3390/rs14040868 |
| ids.doi | https://doi.org/10.3390/rs14040868 |
| ids.openalex | https://openalex.org/W4213227573 |
| fwci | 1.41149223 |
| type | article |
| title | A Semianalytical Algorithm for Estimating Water Transparency in Different Optical Water Types from MERIS Data |
| awards[0].id | https://openalex.org/G213761800 |
| awards[0].funder_id | https://openalex.org/F4320320912 |
| awards[0].display_name | |
| awards[0].funder_award_id | 17H01850 and 17H04475A |
| awards[0].funder_display_name | Ministry of Education, Culture, Sports, Science and Technology |
| biblio.issue | 4 |
| biblio.volume | 14 |
| biblio.last_page | 868 |
| biblio.first_page | 868 |
| topics[0].id | https://openalex.org/T10032 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1910 |
| topics[0].subfield.display_name | Oceanography |
| topics[0].display_name | Marine and coastal ecosystems |
| topics[1].id | https://openalex.org/T12697 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9911999702453613 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Water Quality Monitoring Technologies |
| topics[2].id | https://openalex.org/T11634 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9670000076293945 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Water Quality and Pollution Assessment |
| funders[0].id | https://openalex.org/F4320320912 |
| funders[0].ror | https://ror.org/048rj2z13 |
| funders[0].display_name | Ministry of Education, Culture, Sports, Science and Technology |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C123403432 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6430121660232544 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q654068 |
| concepts[0].display_name | Visibility |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5628441572189331 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5445953607559204 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C98083399 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5444083213806152 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3246517 |
| concepts[3].display_name | Underwater |
| concepts[4].id | https://openalex.org/C79337645 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5440990924835205 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[4].display_name | Outlier |
| concepts[5].id | https://openalex.org/C2781026758 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5424990057945251 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q575941 |
| concepts[5].display_name | Secchi disk |
| concepts[6].id | https://openalex.org/C39432304 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5109626054763794 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[6].display_name | Environmental science |
| concepts[7].id | https://openalex.org/C183852935 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5024139881134033 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6002848 |
| concepts[7].display_name | Imaging spectrometer |
| concepts[8].id | https://openalex.org/C6260449 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49163609743118286 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q41364 |
| concepts[8].display_name | Wavelength |
| concepts[9].id | https://openalex.org/C159774933 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4363239109516144 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q902086 |
| concepts[9].display_name | Attenuation coefficient |
| concepts[10].id | https://openalex.org/C184652730 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4303530752658844 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2357982 |
| concepts[10].display_name | Attenuation |
| concepts[11].id | https://openalex.org/C2780797713 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4184810519218445 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q625376 |
| concepts[11].display_name | Water quality |
| concepts[12].id | https://openalex.org/C33390570 |
| concepts[12].level | 2 |
| concepts[12].score | 0.37938782572746277 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q188463 |
| concepts[12].display_name | Spectrometer |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3507370948791504 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.23924294114112854 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.233351469039917 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C120665830 |
| concepts[16].level | 1 |
| concepts[16].score | 0.2185947597026825 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[16].display_name | Optics |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.21416258811950684 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C127313418 |
| concepts[18].level | 0 |
| concepts[18].score | 0.1547360122203827 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[18].display_name | Geology |
| concepts[19].id | https://openalex.org/C185592680 |
| concepts[19].level | 0 |
| concepts[19].score | 0.14773592352867126 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[19].display_name | Chemistry |
| concepts[20].id | https://openalex.org/C186699998 |
| concepts[20].level | 3 |
| concepts[20].score | 0.09714564681053162 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q156698 |
| concepts[20].display_name | Eutrophication |
| concepts[21].id | https://openalex.org/C18903297 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[21].display_name | Ecology |
| concepts[22].id | https://openalex.org/C111368507 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[22].display_name | Oceanography |
| concepts[23].id | https://openalex.org/C142796444 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q181394 |
| concepts[23].display_name | Nutrient |
| concepts[24].id | https://openalex.org/C86803240 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[24].display_name | Biology |
| concepts[25].id | https://openalex.org/C178790620 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[25].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/visibility |
| keywords[0].score | 0.6430121660232544 |
| keywords[0].display_name | Visibility |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.5628441572189331 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.5445953607559204 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/underwater |
| keywords[3].score | 0.5444083213806152 |
| keywords[3].display_name | Underwater |
| keywords[4].id | https://openalex.org/keywords/outlier |
| keywords[4].score | 0.5440990924835205 |
| keywords[4].display_name | Outlier |
| keywords[5].id | https://openalex.org/keywords/secchi-disk |
| keywords[5].score | 0.5424990057945251 |
| keywords[5].display_name | Secchi disk |
| keywords[6].id | https://openalex.org/keywords/environmental-science |
| keywords[6].score | 0.5109626054763794 |
| keywords[6].display_name | Environmental science |
| keywords[7].id | https://openalex.org/keywords/imaging-spectrometer |
| keywords[7].score | 0.5024139881134033 |
| keywords[7].display_name | Imaging spectrometer |
| keywords[8].id | https://openalex.org/keywords/wavelength |
| keywords[8].score | 0.49163609743118286 |
| keywords[8].display_name | Wavelength |
| keywords[9].id | https://openalex.org/keywords/attenuation-coefficient |
| keywords[9].score | 0.4363239109516144 |
| keywords[9].display_name | Attenuation coefficient |
| keywords[10].id | https://openalex.org/keywords/attenuation |
| keywords[10].score | 0.4303530752658844 |
| keywords[10].display_name | Attenuation |
| keywords[11].id | https://openalex.org/keywords/water-quality |
| keywords[11].score | 0.4184810519218445 |
| keywords[11].display_name | Water quality |
| keywords[12].id | https://openalex.org/keywords/spectrometer |
| keywords[12].score | 0.37938782572746277 |
| keywords[12].display_name | Spectrometer |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.3507370948791504 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.23924294114112854 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.233351469039917 |
| keywords[15].display_name | Statistics |
| keywords[16].id | https://openalex.org/keywords/optics |
| keywords[16].score | 0.2185947597026825 |
| keywords[16].display_name | Optics |
| keywords[17].id | https://openalex.org/keywords/physics |
| keywords[17].score | 0.21416258811950684 |
| keywords[17].display_name | Physics |
| keywords[18].id | https://openalex.org/keywords/geology |
| keywords[18].score | 0.1547360122203827 |
| keywords[18].display_name | Geology |
| keywords[19].id | https://openalex.org/keywords/chemistry |
| keywords[19].score | 0.14773592352867126 |
| keywords[19].display_name | Chemistry |
| keywords[20].id | https://openalex.org/keywords/eutrophication |
| keywords[20].score | 0.09714564681053162 |
| keywords[20].display_name | Eutrophication |
| language | en |
| locations[0].id | doi:10.3390/rs14040868 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/4/868/pdf?version=1644993720 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14040868 |
| locations[1].id | pmh:oai:doaj.org/article:1d01b9b8e5ab47d5b92b5da835feb8b4 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 4, p 868 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/1d01b9b8e5ab47d5b92b5da835feb8b4 |
| locations[2].id | pmh:oai:dspace.stir.ac.uk:1893/34044 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400267 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Stirling Online Research Repository (University of Stirling) |
| locations[2].source.host_organization | https://openalex.org/I12093191 |
| locations[2].source.host_organization_name | University of Stirling |
| locations[2].source.host_organization_lineage | https://openalex.org/I12093191 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Journal Article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/1893/34044 |
| locations[3].id | pmh:oai:mdpi.com:/2072-4292/14/4/868/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Remote Sensing |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/rs14040868 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5090956490 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3784-8000 |
| authorships[0].author.display_name | Anastazia Daniel Msusa |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I146399215 |
| authorships[0].affiliations[0].raw_affiliation_string | Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I146399215 |
| authorships[0].institutions[0].ror | https://ror.org/02956yf07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I146399215 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | University of Tsukuba |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anastazia Daniel Msusa |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan |
| authorships[1].author.id | https://openalex.org/A5057736064 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5676-5860 |
| authorships[1].author.display_name | Dalin Jiang |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I12093191 |
| authorships[1].affiliations[0].raw_affiliation_string | Earth and Planetary Observation Sciences (EPOS), Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK |
| authorships[1].institutions[0].id | https://openalex.org/I12093191 |
| authorships[1].institutions[0].ror | https://ror.org/045wgfr59 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I12093191 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Stirling |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dalin Jiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Earth and Planetary Observation Sciences (EPOS), Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK |
| authorships[2].author.id | https://openalex.org/A5060768667 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6397-1144 |
| authorships[2].author.display_name | Bunkei Matsushita |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I146399215 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I146399215 |
| authorships[2].institutions[0].ror | https://ror.org/02956yf07 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I146399215 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | University of Tsukuba |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bunkei Matsushita |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/4/868/pdf?version=1644993720 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Semianalytical Algorithm for Estimating Water Transparency in Different Optical Water Types from MERIS Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10032 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1910 |
| primary_topic.subfield.display_name | Oceanography |
| primary_topic.display_name | Marine and coastal ecosystems |
| related_works | https://openalex.org/W2392812199, https://openalex.org/W2069884121, https://openalex.org/W2993035310, https://openalex.org/W2270234969, https://openalex.org/W3045105585, https://openalex.org/W2994841894, https://openalex.org/W2392271136, https://openalex.org/W2599834793, https://openalex.org/W3141576179, https://openalex.org/W4243636058 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/rs14040868 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/4/868/pdf?version=1644993720 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14040868 |
| primary_location.id | doi:10.3390/rs14040868 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/4/868/pdf?version=1644993720 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14040868 |
| publication_date | 2022-02-11 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2156313025, https://openalex.org/W1973755634, https://openalex.org/W2096121416, https://openalex.org/W1149925075, https://openalex.org/W2278421427, https://openalex.org/W2731008149, https://openalex.org/W3034030822, https://openalex.org/W2037675284, https://openalex.org/W2038537527, https://openalex.org/W2169939759, https://openalex.org/W2051025410, https://openalex.org/W2162319009, https://openalex.org/W2089874131, https://openalex.org/W2997842586, https://openalex.org/W3168290086, https://openalex.org/W3021726172, https://openalex.org/W2143282602, https://openalex.org/W2802283512, https://openalex.org/W2919067588, https://openalex.org/W2928164210, https://openalex.org/W2912045527, https://openalex.org/W3019337075, https://openalex.org/W2977890623, https://openalex.org/W2975015875, https://openalex.org/W6780403760, https://openalex.org/W3025894080, https://openalex.org/W1995811252, https://openalex.org/W1973860676, https://openalex.org/W3138775503, https://openalex.org/W2082714424, https://openalex.org/W3027958853, https://openalex.org/W1988886499, https://openalex.org/W6646005351, https://openalex.org/W2170178421, https://openalex.org/W2011350642, https://openalex.org/W2076739620, https://openalex.org/W2012116092, https://openalex.org/W1998321777, https://openalex.org/W3082890730, https://openalex.org/W2796478303, https://openalex.org/W2907579905, https://openalex.org/W3016240401, https://openalex.org/W2107205921, https://openalex.org/W2056003716, https://openalex.org/W2046138711, https://openalex.org/W2764084117, https://openalex.org/W3025417591, https://openalex.org/W3041290234, https://openalex.org/W1982794055 |
| referenced_works_count | 49 |
| abstract_inverted_index.= | 154, 169 |
| abstract_inverted_index.a | 8, 31, 45, 150, 180, 184, 259 |
| abstract_inverted_index.(N | 153, 168 |
| abstract_inverted_index.19 | 243 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.We | 219 |
| abstract_inverted_index.an | 95, 163 |
| abstract_inverted_index.at | 118 |
| abstract_inverted_index.be | 270 |
| abstract_inverted_index.in | 39, 51, 164, 204, 208, 215, 254 |
| abstract_inverted_index.is | 7, 16 |
| abstract_inverted_index.it | 15 |
| abstract_inverted_index.m) | 161 |
| abstract_inverted_index.of | 11, 44, 134, 144, 261 |
| abstract_inverted_index.on | 41, 107 |
| abstract_inverted_index.or | 73 |
| abstract_inverted_index.to | 19, 29, 98, 142, 159, 174, 193, 201, 272, 278 |
| abstract_inverted_index.we | 25 |
| abstract_inverted_index.(1) | 57 |
| abstract_inverted_index.(2) | 80 |
| abstract_inverted_index.(3) | 93 |
| abstract_inverted_index.(4) | 113 |
| abstract_inverted_index.(or | 2 |
| abstract_inverted_index.0.3 | 173 |
| abstract_inverted_index.27% | 202 |
| abstract_inverted_index.32% | 200 |
| abstract_inverted_index.65% | 194 |
| abstract_inverted_index.I), | 64 |
| abstract_inverted_index.IV) | 77 |
| abstract_inverted_index.The | 53, 132, 177, 239, 263 |
| abstract_inverted_index.ZSD | 33, 137, 156, 171, 224, 249, 265 |
| abstract_inverted_index.all | 59 |
| abstract_inverted_index.and | 85, 112, 162, 198 |
| abstract_inverted_index.can | 268 |
| abstract_inverted_index.due | 277 |
| abstract_inverted_index.for | 89, 102, 128, 195, 203 |
| abstract_inverted_index.its | 279 |
| abstract_inverted_index.key | 9 |
| abstract_inverted_index.m). | 176 |
| abstract_inverted_index.new | 46, 217 |
| abstract_inverted_index.the | 42, 108, 120, 135, 145, 209, 216, 222, 247, 253 |
| abstract_inverted_index.was | 37, 140 |
| abstract_inverted_index.0.01 | 158 |
| abstract_inverted_index.116% | 192 |
| abstract_inverted_index.15%. | 262 |
| abstract_inverted_index.16.4 | 175 |
| abstract_inverted_index.2019 | 40 |
| abstract_inverted_index.305, | 170 |
| abstract_inverted_index.II), | 68 |
| abstract_inverted_index.Lake | 236 |
| abstract_inverted_index.MAPE | 260 |
| abstract_inverted_index.ZSD) | 6 |
| abstract_inverted_index.ZSD, | 257 |
| abstract_inverted_index.data | 197 |
| abstract_inverted_index.disk | 4 |
| abstract_inverted_index.each | 90, 129 |
| abstract_inverted_index.four | 27, 54 |
| abstract_inverted_index.from | 191, 199, 235, 242 |
| abstract_inverted_index.into | 61 |
| abstract_inverted_index.made | 26 |
| abstract_inverted_index.mean | 186 |
| abstract_inverted_index.situ | 165, 205, 255 |
| abstract_inverted_index.that | 36, 143, 246 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.type | 110 |
| abstract_inverted_index.very | 17 |
| abstract_inverted_index.well | 213, 251 |
| abstract_inverted_index.were | 212 |
| abstract_inverted_index.will | 126 |
| abstract_inverted_index.with | 183, 252, 258 |
| abstract_inverted_index.(Type | 63, 67, 71, 76 |
| abstract_inverted_index.2015. | 52 |
| abstract_inverted_index.44.68 | 160 |
| abstract_inverted_index.III), | 72 |
| abstract_inverted_index.Water | 0 |
| abstract_inverted_index.based | 106 |
| abstract_inverted_index.basis | 43 |
| abstract_inverted_index.clear | 62 |
| abstract_inverted_index.data. | 206 |
| abstract_inverted_index.error | 189 |
| abstract_inverted_index.model | 97 |
| abstract_inverted_index.occur | 127 |
| abstract_inverted_index.range | 117 |
| abstract_inverted_index.thus, | 14 |
| abstract_inverted_index.type. | 131 |
| abstract_inverted_index.type; | 92 |
| abstract_inverted_index.types | 276 |
| abstract_inverted_index.using | 149, 227 |
| abstract_inverted_index.water | 12, 60, 78, 91, 109, 130, 275 |
| abstract_inverted_index.were: | 56 |
| abstract_inverted_index.which | 119 |
| abstract_inverted_index.(MAPE) | 190 |
| abstract_inverted_index.Japan. | 238 |
| abstract_inverted_index.Secchi | 3 |
| abstract_inverted_index.depth: | 5 |
| abstract_inverted_index.highly | 69 |
| abstract_inverted_index.images | 233 |
| abstract_inverted_index.likely | 115 |
| abstract_inverted_index.medium | 228 |
| abstract_inverted_index.models | 88 |
| abstract_inverted_index.shapes | 101 |
| abstract_inverted_index.showed | 179 |
| abstract_inverted_index.study, | 24 |
| abstract_inverted_index.theory | 49 |
| abstract_inverted_index.turbid | 66, 70, 75 |
| abstract_inverted_index.types; | 79 |
| abstract_inverted_index.values | 157, 172 |
| abstract_inverted_index.(MERIS) | 232 |
| abstract_inverted_index.91,287, | 155 |
| abstract_inverted_index.applied | 271 |
| abstract_inverted_index.dataset | 152, 167 |
| abstract_inverted_index.diffuse | 122 |
| abstract_inverted_index.efforts | 28, 55 |
| abstract_inverted_index.further | 220 |
| abstract_inverted_index.imaging | 230 |
| abstract_inverted_index.improve | 30 |
| abstract_inverted_index.matched | 250 |
| abstract_inverted_index.minimum | 121 |
| abstract_inverted_index.optical | 274 |
| abstract_inverted_index.reduced | 185 |
| abstract_inverted_index.results | 178, 240 |
| abstract_inverted_index.(Kd(λ)) | 125 |
| abstract_inverted_index.Outliers | 207 |
| abstract_inverted_index.absolute | 187 |
| abstract_inverted_index.acquired | 234 |
| abstract_inverted_index.compared | 141 |
| abstract_inverted_index.matchups | 244 |
| abstract_inverted_index.measured | 166, 256 |
| abstract_inverted_index.monitor. | 21 |
| abstract_inverted_index.obtained | 241 |
| abstract_inverted_index.original | 146 |
| abstract_inverted_index.previous | 210 |
| abstract_inverted_index.probably | 269 |
| abstract_inverted_index.proposed | 50, 136 |
| abstract_inverted_index.quality; | 13 |
| abstract_inverted_index.revealed | 245 |
| abstract_inverted_index.addressed | 214 |
| abstract_inverted_index.algorithm | 35, 139, 148, 211, 226, 267 |
| abstract_inverted_index.developed | 38, 223, 264 |
| abstract_inverted_index.different | 82, 273 |
| abstract_inverted_index.employing | 94 |
| abstract_inverted_index.estimated | 248 |
| abstract_inverted_index.evaluated | 221 |
| abstract_inverted_index.extremely | 74 |
| abstract_inverted_index.features. | 281 |
| abstract_inverted_index.important | 18 |
| abstract_inverted_index.parameter | 10 |
| abstract_inverted_index.reference | 83 |
| abstract_inverted_index.represent | 99 |
| abstract_inverted_index.routinely | 20 |
| abstract_inverted_index.selecting | 81 |
| abstract_inverted_index.simulated | 151, 196 |
| abstract_inverted_index.algorithm. | 218 |
| abstract_inverted_index.estimation | 34, 96, 138, 225, 266 |
| abstract_inverted_index.moderately | 65 |
| abstract_inverted_index.percentage | 188 |
| abstract_inverted_index.reasonable | 100 |
| abstract_inverted_index.resolution | 229 |
| abstract_inverted_index.underwater | 47 |
| abstract_inverted_index.visibility | 48 |
| abstract_inverted_index.wavelength | 116 |
| abstract_inverted_index.attenuation | 123 |
| abstract_inverted_index.classifying | 58 |
| abstract_inverted_index.coefficient | 124 |
| abstract_inverted_index.improvement | 182 |
| abstract_inverted_index.particulate | 103 |
| abstract_inverted_index.performance | 133 |
| abstract_inverted_index.significant | 181 |
| abstract_inverted_index.wavelengths | 84 |
| abstract_inverted_index.Kasumigaura, | 237 |
| abstract_inverted_index.coefficients | 105 |
| abstract_inverted_index.constraining | 114 |
| abstract_inverted_index.spectrometer | 231 |
| abstract_inverted_index.transparency | 1 |
| abstract_inverted_index.corresponding | 86 |
| abstract_inverted_index.backscattering | 104 |
| abstract_inverted_index.semianalytical | 87, 280 |
| abstract_inverted_index.classification; | 111 |
| abstract_inverted_index.state-of-the-art | 32, 147 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5060768667 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I146399215 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.76669225 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |