A Short-Term Load Forecasting Method Based on GRU-CNN Hybrid Neural Network Model Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1155/2020/1428104
Short-term load forecasting (STLF) plays a very important role in improving the economy and stability of the power system operation. With the smart meters and smart sensors widely deployed in the power system, a large amount of data was generated but not fully utilized, these data are complex and diverse, and most of the STLF methods cannot well handle such a huge, complex, and diverse data. For better accuracy of STLF, a GRU-CNN hybrid neural network model which combines the gated recurrent unit (GRU) and convolutional neural networks (CNN) was proposed; the feature vector of time sequence data is extracted by the GRU module, and the feature vector of other high-dimensional data is extracted by the CNN module. The proposed model was tested in a real-world experiment, and the mean absolute percentage error (MAPE) and the root mean square error (RMSE) of the GRU-CNN model are the lowest among BPNN, GRU, and CNN forecasting methods; the proposed GRU-CNN model can more fully use data and achieve more accurate short-term load forecasting.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2020/1428104
- https://downloads.hindawi.com/journals/mpe/2020/1428104.pdf
- OA Status
- hybrid
- Cited By
- 201
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3011149747
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3011149747Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2020/1428104Digital Object Identifier
- Title
-
A Short-Term Load Forecasting Method Based on GRU-CNN Hybrid Neural Network ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-21Full publication date if available
- Authors
-
Lizhen Wu, Kong Chun, Xiaohong Hao, Wei ChenList of authors in order
- Landing page
-
https://doi.org/10.1155/2020/1428104Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/mpe/2020/1428104.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/mpe/2020/1428104.pdfDirect OA link when available
- Concepts
-
Mean absolute percentage error, Mean squared error, Convolutional neural network, Artificial neural network, Computer science, Term (time), Artificial intelligence, Feature (linguistics), Pattern recognition (psychology), Cellular neural network, Support vector machine, Data mining, Mathematics, Statistics, Quantum mechanics, Physics, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
201Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 34, 2024: 43, 2023: 46, 2022: 37, 2021: 36Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3011149747 |
|---|---|
| doi | https://doi.org/10.1155/2020/1428104 |
| ids.doi | https://doi.org/10.1155/2020/1428104 |
| ids.mag | 3011149747 |
| ids.openalex | https://openalex.org/W3011149747 |
| fwci | 12.17734221 |
| type | article |
| title | A Short-Term Load Forecasting Method Based on GRU-CNN Hybrid Neural Network Model |
| awards[0].id | https://openalex.org/G1567270181 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 51467009 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G735191463 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 18JR3RA133 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 2020 |
| biblio.last_page | 10 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9930999875068665 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T11344 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9883999824523926 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Traffic Prediction and Management Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | USD |
| apc_list.value_usd | 2400 |
| apc_paid.value | 2400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2400 |
| concepts[0].id | https://openalex.org/C150217764 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7478341460227966 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6803607 |
| concepts[0].display_name | Mean absolute percentage error |
| concepts[1].id | https://openalex.org/C139945424 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6972919702529907 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[1].display_name | Mean squared error |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6397542953491211 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5993976593017578 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5530142784118652 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C61797465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.551213264465332 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[5].display_name | Term (time) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5436422824859619 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5087955594062805 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4812302589416504 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C812465 |
| concepts[9].level | 3 |
| concepts[9].score | 0.46840354800224304 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5058375 |
| concepts[9].display_name | Cellular neural network |
| concepts[10].id | https://openalex.org/C12267149 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4381415843963623 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[10].display_name | Support vector machine |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37675410509109497 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09452134370803833 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09035798907279968 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/mean-absolute-percentage-error |
| keywords[0].score | 0.7478341460227966 |
| keywords[0].display_name | Mean absolute percentage error |
| keywords[1].id | https://openalex.org/keywords/mean-squared-error |
| keywords[1].score | 0.6972919702529907 |
| keywords[1].display_name | Mean squared error |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6397542953491211 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5993976593017578 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5530142784118652 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/term |
| keywords[5].score | 0.551213264465332 |
| keywords[5].display_name | Term (time) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5436422824859619 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.5087955594062805 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.4812302589416504 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/cellular-neural-network |
| keywords[9].score | 0.46840354800224304 |
| keywords[9].display_name | Cellular neural network |
| keywords[10].id | https://openalex.org/keywords/support-vector-machine |
| keywords[10].score | 0.4381415843963623 |
| keywords[10].display_name | Support vector machine |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.37675410509109497 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.09452134370803833 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.09035798907279968 |
| keywords[13].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1155/2020/1428104 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S178238111 |
| locations[0].source.issn | 1024-123X, 1026-7077, 1563-5147 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1024-123X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Mathematical Problems in Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/mpe/2020/1428104.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematical Problems in Engineering |
| locations[0].landing_page_url | https://doi.org/10.1155/2020/1428104 |
| locations[1].id | pmh:oai:doaj.org/article:d9954ac0bcc54260804a23224184c7b1 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematical Problems in Engineering, Vol 2020 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/d9954ac0bcc54260804a23224184c7b1 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5062027208 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8950-8198 |
| authorships[0].author.display_name | Lizhen Wu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I22716506 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China |
| authorships[0].institutions[0].id | https://openalex.org/I22716506 |
| authorships[0].institutions[0].ror | https://ror.org/03panb555 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I22716506 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Lanzhou University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lizhen Wu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China |
| authorships[1].author.id | https://openalex.org/A5011752357 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kong Chun |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I22716506 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China |
| authorships[1].institutions[0].id | https://openalex.org/I22716506 |
| authorships[1].institutions[0].ror | https://ror.org/03panb555 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I22716506 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Lanzhou University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chun Kong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China |
| authorships[2].author.id | https://openalex.org/A5100993765 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xiaohong Hao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I22716506 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China |
| authorships[2].institutions[0].id | https://openalex.org/I22716506 |
| authorships[2].institutions[0].ror | https://ror.org/03panb555 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I22716506 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Lanzhou University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaohong Hao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China |
| authorships[3].author.id | https://openalex.org/A5100344294 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5090-9915 |
| authorships[3].author.display_name | Wei Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I22716506 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China |
| authorships[3].institutions[0].id | https://openalex.org/I22716506 |
| authorships[3].institutions[0].ror | https://ror.org/03panb555 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I22716506 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Lanzhou University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wei Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/mpe/2020/1428104.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Short-Term Load Forecasting Method Based on GRU-CNN Hybrid Neural Network Model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W4318676890, https://openalex.org/W2039947585, https://openalex.org/W4385195237, https://openalex.org/W3178576217, https://openalex.org/W4285102093, https://openalex.org/W4210644201, https://openalex.org/W3111532652, https://openalex.org/W2510451507, https://openalex.org/W4283367183, https://openalex.org/W4381189085 |
| cited_by_count | 201 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 34 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 43 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 46 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 37 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 36 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2020/1428104 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S178238111 |
| best_oa_location.source.issn | 1024-123X, 1026-7077, 1563-5147 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1024-123X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Mathematical Problems in Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/mpe/2020/1428104.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematical Problems in Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2020/1428104 |
| primary_location.id | doi:10.1155/2020/1428104 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S178238111 |
| primary_location.source.issn | 1024-123X, 1026-7077, 1563-5147 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1024-123X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Mathematical Problems in Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/mpe/2020/1428104.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematical Problems in Engineering |
| primary_location.landing_page_url | https://doi.org/10.1155/2020/1428104 |
| publication_date | 2020-03-21 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2586259521, https://openalex.org/W2955008174, https://openalex.org/W2754252319, https://openalex.org/W2938140596, https://openalex.org/W2905388713, https://openalex.org/W2807831972, https://openalex.org/W2883971393, https://openalex.org/W2094054185, https://openalex.org/W2209798243, https://openalex.org/W2023419040, https://openalex.org/W2792800544, https://openalex.org/W2024493895, https://openalex.org/W2727827603, https://openalex.org/W2946664576, https://openalex.org/W2005683380, https://openalex.org/W1987498744, https://openalex.org/W1984051156, https://openalex.org/W2747672899, https://openalex.org/W2743719242, https://openalex.org/W2956074973, https://openalex.org/W2958851591, https://openalex.org/W2113350326, https://openalex.org/W2064675550, https://openalex.org/W2947175452, https://openalex.org/W2967842289, https://openalex.org/W2900680591, https://openalex.org/W2888165363, https://openalex.org/W2919115771, https://openalex.org/W2894287712, https://openalex.org/W2788553534, https://openalex.org/W2888797051, https://openalex.org/W2913150433, https://openalex.org/W2923962282, https://openalex.org/W3105021215 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 5, 33, 60, 71, 124 |
| abstract_inverted_index.by | 100, 114 |
| abstract_inverted_index.in | 9, 29, 123 |
| abstract_inverted_index.is | 98, 112 |
| abstract_inverted_index.of | 15, 36, 52, 69, 94, 108, 141 |
| abstract_inverted_index.CNN | 116, 152 |
| abstract_inverted_index.For | 66 |
| abstract_inverted_index.GRU | 102 |
| abstract_inverted_index.The | 118 |
| abstract_inverted_index.and | 13, 24, 48, 50, 63, 84, 104, 127, 134, 151, 164 |
| abstract_inverted_index.are | 46, 145 |
| abstract_inverted_index.but | 40 |
| abstract_inverted_index.can | 159 |
| abstract_inverted_index.not | 41 |
| abstract_inverted_index.the | 11, 16, 21, 30, 53, 79, 91, 101, 105, 115, 128, 135, 142, 146, 155 |
| abstract_inverted_index.use | 162 |
| abstract_inverted_index.was | 38, 89, 121 |
| abstract_inverted_index.GRU, | 150 |
| abstract_inverted_index.STLF | 54 |
| abstract_inverted_index.With | 20 |
| abstract_inverted_index.data | 37, 45, 97, 111, 163 |
| abstract_inverted_index.load | 1, 169 |
| abstract_inverted_index.mean | 129, 137 |
| abstract_inverted_index.more | 160, 166 |
| abstract_inverted_index.most | 51 |
| abstract_inverted_index.role | 8 |
| abstract_inverted_index.root | 136 |
| abstract_inverted_index.such | 59 |
| abstract_inverted_index.time | 95 |
| abstract_inverted_index.unit | 82 |
| abstract_inverted_index.very | 6 |
| abstract_inverted_index.well | 57 |
| abstract_inverted_index.(CNN) | 88 |
| abstract_inverted_index.(GRU) | 83 |
| abstract_inverted_index.BPNN, | 149 |
| abstract_inverted_index.STLF, | 70 |
| abstract_inverted_index.among | 148 |
| abstract_inverted_index.data. | 65 |
| abstract_inverted_index.error | 132, 139 |
| abstract_inverted_index.fully | 42, 161 |
| abstract_inverted_index.gated | 80 |
| abstract_inverted_index.huge, | 61 |
| abstract_inverted_index.large | 34 |
| abstract_inverted_index.model | 76, 120, 144, 158 |
| abstract_inverted_index.other | 109 |
| abstract_inverted_index.plays | 4 |
| abstract_inverted_index.power | 17, 31 |
| abstract_inverted_index.smart | 22, 25 |
| abstract_inverted_index.these | 44 |
| abstract_inverted_index.which | 77 |
| abstract_inverted_index.(MAPE) | 133 |
| abstract_inverted_index.(RMSE) | 140 |
| abstract_inverted_index.(STLF) | 3 |
| abstract_inverted_index.amount | 35 |
| abstract_inverted_index.better | 67 |
| abstract_inverted_index.cannot | 56 |
| abstract_inverted_index.handle | 58 |
| abstract_inverted_index.hybrid | 73 |
| abstract_inverted_index.lowest | 147 |
| abstract_inverted_index.meters | 23 |
| abstract_inverted_index.neural | 74, 86 |
| abstract_inverted_index.square | 138 |
| abstract_inverted_index.system | 18 |
| abstract_inverted_index.tested | 122 |
| abstract_inverted_index.vector | 93, 107 |
| abstract_inverted_index.widely | 27 |
| abstract_inverted_index.GRU-CNN | 72, 143, 157 |
| abstract_inverted_index.achieve | 165 |
| abstract_inverted_index.complex | 47 |
| abstract_inverted_index.diverse | 64 |
| abstract_inverted_index.economy | 12 |
| abstract_inverted_index.feature | 92, 106 |
| abstract_inverted_index.methods | 55 |
| abstract_inverted_index.module, | 103 |
| abstract_inverted_index.module. | 117 |
| abstract_inverted_index.network | 75 |
| abstract_inverted_index.sensors | 26 |
| abstract_inverted_index.system, | 32 |
| abstract_inverted_index.absolute | 130 |
| abstract_inverted_index.accuracy | 68 |
| abstract_inverted_index.accurate | 167 |
| abstract_inverted_index.combines | 78 |
| abstract_inverted_index.complex, | 62 |
| abstract_inverted_index.deployed | 28 |
| abstract_inverted_index.diverse, | 49 |
| abstract_inverted_index.methods; | 154 |
| abstract_inverted_index.networks | 87 |
| abstract_inverted_index.proposed | 119, 156 |
| abstract_inverted_index.sequence | 96 |
| abstract_inverted_index.extracted | 99, 113 |
| abstract_inverted_index.generated | 39 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.improving | 10 |
| abstract_inverted_index.proposed; | 90 |
| abstract_inverted_index.recurrent | 81 |
| abstract_inverted_index.stability | 14 |
| abstract_inverted_index.utilized, | 43 |
| abstract_inverted_index.Short-term | 0 |
| abstract_inverted_index.operation. | 19 |
| abstract_inverted_index.percentage | 131 |
| abstract_inverted_index.real-world | 125 |
| abstract_inverted_index.short-term | 168 |
| abstract_inverted_index.experiment, | 126 |
| abstract_inverted_index.forecasting | 2, 153 |
| abstract_inverted_index.forecasting. | 170 |
| abstract_inverted_index.convolutional | 85 |
| abstract_inverted_index.high-dimensional | 110 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5062027208 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I22716506 |
| citation_normalized_percentile.value | 0.99244348 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |