A simple, effective distance and density based outlier detection algorithm Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.11591/ijeecs.v24.i2.pp1141-1148
Outliers are eccentric data points with anomalous nature. Clustering with outliers has received a lot of attention in the data processing community. But, they inordinately affect the quality of the results obtained in case of popular clustering algorithms during the process of finding an optimal solution. In this work, we propose a novel method to classify the data points with grouping characteristics as either an outlier or not. We use both distance and density of a particular data point with respect to the rest of the data points for this process. Distances are used to find the points at the extremities while the densities are used to identify the data points at the sparsest spaces. Further, every data model has to take into account the aspect of generalization in order to work robustly even in out of the box situations. Hence, our approach provides a generalization aspect to the model. The accuracy of the proposed work is measured using area under curve (AUC) was found the highest for cardioto data set -AUC value-0.90 and second highest AUC value was obtained for Spambase data set -0.52 and several other datasets are used to demonstrate the usage of the model proposed.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijeecs.v24.i2.pp1141-1148
- https://ijeecs.iaescore.com/index.php/IJEECS/article/download/25861/15735
- OA Status
- diamond
- Cited By
- 1
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3202404202
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3202404202Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijeecs.v24.i2.pp1141-1148Digital Object Identifier
- Title
-
A simple, effective distance and density based outlier detection algorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-01Full publication date if available
- Authors
-
S. A. Sajidha, Udai Agarwal, R. P. Pruthviraj, Sparsh Agarwal, V. M. Nisha, Amit Kumar TyagiList of authors in order
- Landing page
-
https://doi.org/10.11591/ijeecs.v24.i2.pp1141-1148Publisher landing page
- PDF URL
-
https://ijeecs.iaescore.com/index.php/IJEECS/article/download/25861/15735Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijeecs.iaescore.com/index.php/IJEECS/article/download/25861/15735Direct OA link when available
- Concepts
-
Outlier, Generalization, Cluster analysis, Data point, Data set, Anomaly detection, Data mining, Set (abstract data type), Computer science, Algorithm, Mathematics, Pattern recognition (psychology), Artificial intelligence, Mathematical analysis, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3202404202 |
|---|---|
| doi | https://doi.org/10.11591/ijeecs.v24.i2.pp1141-1148 |
| ids.doi | https://doi.org/10.11591/ijeecs.v24.i2.pp1141-1148 |
| ids.mag | 3202404202 |
| ids.openalex | https://openalex.org/W3202404202 |
| fwci | 0.14110358 |
| type | article |
| title | A simple, effective distance and density based outlier detection algorithm |
| biblio.issue | 2 |
| biblio.volume | 24 |
| biblio.last_page | 1141 |
| biblio.first_page | 1141 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11871 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9915000200271606 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Advanced Statistical Methods and Models |
| topics[2].id | https://openalex.org/T12391 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9854000210762024 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Artificial Immune Systems Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79337645 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8467932343482971 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[0].display_name | Outlier |
| concepts[1].id | https://openalex.org/C177148314 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7225812673568726 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[1].display_name | Generalization |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6915768980979919 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C21080849 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5845509767532349 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q13611879 |
| concepts[3].display_name | Data point |
| concepts[4].id | https://openalex.org/C58489278 |
| concepts[4].level | 2 |
| concepts[4].score | 0.563301682472229 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[4].display_name | Data set |
| concepts[5].id | https://openalex.org/C739882 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5424157381057739 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[5].display_name | Anomaly detection |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5107641220092773 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5011913776397705 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.49027207493782043 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4414519667625427 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.4056239426136017 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.39629244804382324 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.34503501653671265 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/outlier |
| keywords[0].score | 0.8467932343482971 |
| keywords[0].display_name | Outlier |
| keywords[1].id | https://openalex.org/keywords/generalization |
| keywords[1].score | 0.7225812673568726 |
| keywords[1].display_name | Generalization |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.6915768980979919 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/data-point |
| keywords[3].score | 0.5845509767532349 |
| keywords[3].display_name | Data point |
| keywords[4].id | https://openalex.org/keywords/data-set |
| keywords[4].score | 0.563301682472229 |
| keywords[4].display_name | Data set |
| keywords[5].id | https://openalex.org/keywords/anomaly-detection |
| keywords[5].score | 0.5424157381057739 |
| keywords[5].display_name | Anomaly detection |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.5107641220092773 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.5011913776397705 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.49027207493782043 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.4414519667625427 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.4056239426136017 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.39629244804382324 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.34503501653671265 |
| keywords[12].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.11591/ijeecs.v24.i2.pp1141-1148 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764855249 |
| locations[0].source.issn | 2502-4752, 2502-4760 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2502-4752 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Indonesian Journal of Electrical Engineering and Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://ijeecs.iaescore.com/index.php/IJEECS/article/download/25861/15735 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Indonesian Journal of Electrical Engineering and Computer Science |
| locations[0].landing_page_url | https://doi.org/10.11591/ijeecs.v24.i2.pp1141-1148 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5112929887 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | S. A. Sajidha |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[0].affiliations[0].raw_affiliation_string | Vellore Institute of Technology |
| authorships[0].institutions[0].id | https://openalex.org/I876193797 |
| authorships[0].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sajidha S. A. |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Vellore Institute of Technology |
| authorships[1].author.id | https://openalex.org/A5031761737 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Udai Agarwal |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[1].affiliations[0].raw_affiliation_string | Vellore Institute of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I876193797 |
| authorships[1].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Udai Agarwal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Vellore Institute of Technology |
| authorships[2].author.id | https://openalex.org/A5014450277 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | R. P. Pruthviraj |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[2].affiliations[0].raw_affiliation_string | Vellore Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I876193797 |
| authorships[2].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pruthviraj R. P. |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Vellore Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5065269447 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6246-6119 |
| authorships[3].author.display_name | Sparsh Agarwal |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[3].affiliations[0].raw_affiliation_string | Vellore Institute of Technology |
| authorships[3].institutions[0].id | https://openalex.org/I876193797 |
| authorships[3].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sparsh Agarwal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Vellore Institute of Technology |
| authorships[4].author.id | https://openalex.org/A5061674571 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | V. M. Nisha |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[4].affiliations[0].raw_affiliation_string | Vellore Institute of Technology |
| authorships[4].institutions[0].id | https://openalex.org/I876193797 |
| authorships[4].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nisha V. M. |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Vellore Institute of Technology |
| authorships[5].author.id | https://openalex.org/A5039774878 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2657-8700 |
| authorships[5].author.display_name | Amit Kumar Tyagi |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[5].affiliations[0].raw_affiliation_string | Vellore Institute of Technology |
| authorships[5].institutions[0].id | https://openalex.org/I876193797 |
| authorships[5].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Amit Kumar Tyagi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Vellore Institute of Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijeecs.iaescore.com/index.php/IJEECS/article/download/25861/15735 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A simple, effective distance and density based outlier detection algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2499612753, https://openalex.org/W3111802945, https://openalex.org/W2946096271, https://openalex.org/W2295423552, https://openalex.org/W3107369729, https://openalex.org/W4390662392, https://openalex.org/W71955863, https://openalex.org/W2359185137, https://openalex.org/W2610918223, https://openalex.org/W2085200861 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijeecs.v24.i2.pp1141-1148 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764855249 |
| best_oa_location.source.issn | 2502-4752, 2502-4760 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2502-4752 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Indonesian Journal of Electrical Engineering and Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://ijeecs.iaescore.com/index.php/IJEECS/article/download/25861/15735 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Indonesian Journal of Electrical Engineering and Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijeecs.v24.i2.pp1141-1148 |
| primary_location.id | doi:10.11591/ijeecs.v24.i2.pp1141-1148 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764855249 |
| primary_location.source.issn | 2502-4752, 2502-4760 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2502-4752 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Indonesian Journal of Electrical Engineering and Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://ijeecs.iaescore.com/index.php/IJEECS/article/download/25861/15735 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Indonesian Journal of Electrical Engineering and Computer Science |
| primary_location.landing_page_url | https://doi.org/10.11591/ijeecs.v24.i2.pp1141-1148 |
| publication_date | 2021-11-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2781846356, https://openalex.org/W2804417211, https://openalex.org/W2975092356, https://openalex.org/W2144182447, https://openalex.org/W2155430615, https://openalex.org/W2590761734, https://openalex.org/W2015887370, https://openalex.org/W1986332411, https://openalex.org/W1548161163, https://openalex.org/W2041184937, https://openalex.org/W199035648, https://openalex.org/W2000661457, https://openalex.org/W3035470799, https://openalex.org/W4253686938, https://openalex.org/W2795514556, https://openalex.org/W2980588984, https://openalex.org/W2973154060, https://openalex.org/W3083453952, https://openalex.org/W2949362468, https://openalex.org/W2995619225, https://openalex.org/W4247722417, https://openalex.org/W2166999932 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 13, 51, 75, 144 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.We | 68 |
| abstract_inverted_index.an | 43, 64 |
| abstract_inverted_index.as | 62 |
| abstract_inverted_index.at | 98, 111 |
| abstract_inverted_index.in | 17, 32, 128, 134 |
| abstract_inverted_index.is | 156 |
| abstract_inverted_index.of | 15, 28, 34, 41, 74, 84, 126, 136, 152, 195 |
| abstract_inverted_index.or | 66 |
| abstract_inverted_index.to | 54, 81, 94, 106, 120, 130, 147, 191 |
| abstract_inverted_index.we | 49 |
| abstract_inverted_index.AUC | 176 |
| abstract_inverted_index.The | 150 |
| abstract_inverted_index.and | 72, 173, 185 |
| abstract_inverted_index.are | 1, 92, 104, 189 |
| abstract_inverted_index.box | 138 |
| abstract_inverted_index.for | 88, 167, 180 |
| abstract_inverted_index.has | 11, 119 |
| abstract_inverted_index.lot | 14 |
| abstract_inverted_index.our | 141 |
| abstract_inverted_index.out | 135 |
| abstract_inverted_index.set | 170, 183 |
| abstract_inverted_index.the | 18, 26, 29, 39, 56, 82, 85, 96, 99, 102, 108, 112, 124, 137, 148, 153, 165, 193, 196 |
| abstract_inverted_index.use | 69 |
| abstract_inverted_index.was | 163, 178 |
| abstract_inverted_index.-AUC | 171 |
| abstract_inverted_index.But, | 22 |
| abstract_inverted_index.area | 159 |
| abstract_inverted_index.both | 70 |
| abstract_inverted_index.case | 33 |
| abstract_inverted_index.data | 3, 19, 57, 77, 86, 109, 117, 169, 182 |
| abstract_inverted_index.even | 133 |
| abstract_inverted_index.find | 95 |
| abstract_inverted_index.into | 122 |
| abstract_inverted_index.not. | 67 |
| abstract_inverted_index.rest | 83 |
| abstract_inverted_index.take | 121 |
| abstract_inverted_index.they | 23 |
| abstract_inverted_index.this | 47, 89 |
| abstract_inverted_index.used | 93, 105, 190 |
| abstract_inverted_index.with | 5, 9, 59, 79 |
| abstract_inverted_index.work | 131, 155 |
| abstract_inverted_index.(AUC) | 162 |
| abstract_inverted_index.-0.52 | 184 |
| abstract_inverted_index.curve | 161 |
| abstract_inverted_index.every | 116 |
| abstract_inverted_index.found | 164 |
| abstract_inverted_index.model | 118, 197 |
| abstract_inverted_index.novel | 52 |
| abstract_inverted_index.order | 129 |
| abstract_inverted_index.other | 187 |
| abstract_inverted_index.point | 78 |
| abstract_inverted_index.under | 160 |
| abstract_inverted_index.usage | 194 |
| abstract_inverted_index.using | 158 |
| abstract_inverted_index.value | 177 |
| abstract_inverted_index.while | 101 |
| abstract_inverted_index.work, | 48 |
| abstract_inverted_index.Hence, | 140 |
| abstract_inverted_index.affect | 25 |
| abstract_inverted_index.aspect | 125, 146 |
| abstract_inverted_index.during | 38 |
| abstract_inverted_index.either | 63 |
| abstract_inverted_index.method | 53 |
| abstract_inverted_index.model. | 149 |
| abstract_inverted_index.points | 4, 58, 87, 97, 110 |
| abstract_inverted_index.second | 174 |
| abstract_inverted_index.account | 123 |
| abstract_inverted_index.density | 73 |
| abstract_inverted_index.finding | 42 |
| abstract_inverted_index.highest | 166, 175 |
| abstract_inverted_index.nature. | 7 |
| abstract_inverted_index.optimal | 44 |
| abstract_inverted_index.outlier | 65 |
| abstract_inverted_index.popular | 35 |
| abstract_inverted_index.process | 40 |
| abstract_inverted_index.propose | 50 |
| abstract_inverted_index.quality | 27 |
| abstract_inverted_index.respect | 80 |
| abstract_inverted_index.results | 30 |
| abstract_inverted_index.several | 186 |
| abstract_inverted_index.spaces. | 114 |
| abstract_inverted_index.Further, | 115 |
| abstract_inverted_index.Outliers | 0 |
| abstract_inverted_index.Spambase | 181 |
| abstract_inverted_index.accuracy | 151 |
| abstract_inverted_index.approach | 142 |
| abstract_inverted_index.cardioto | 168 |
| abstract_inverted_index.classify | 55 |
| abstract_inverted_index.datasets | 188 |
| abstract_inverted_index.distance | 71 |
| abstract_inverted_index.grouping | 60 |
| abstract_inverted_index.identify | 107 |
| abstract_inverted_index.measured | 157 |
| abstract_inverted_index.obtained | 31, 179 |
| abstract_inverted_index.outliers | 10 |
| abstract_inverted_index.process. | 90 |
| abstract_inverted_index.proposed | 154 |
| abstract_inverted_index.provides | 143 |
| abstract_inverted_index.received | 12 |
| abstract_inverted_index.robustly | 132 |
| abstract_inverted_index.sparsest | 113 |
| abstract_inverted_index.Distances | 91 |
| abstract_inverted_index.anomalous | 6 |
| abstract_inverted_index.attention | 16 |
| abstract_inverted_index.densities | 103 |
| abstract_inverted_index.eccentric | 2 |
| abstract_inverted_index.proposed. | 198 |
| abstract_inverted_index.solution. | 45 |
| abstract_inverted_index.Clustering | 8 |
| abstract_inverted_index.algorithms | 37 |
| abstract_inverted_index.clustering | 36 |
| abstract_inverted_index.community. | 21 |
| abstract_inverted_index.particular | 76 |
| abstract_inverted_index.processing | 20 |
| abstract_inverted_index.value-0.90 | 172 |
| abstract_inverted_index.demonstrate | 192 |
| abstract_inverted_index.extremities | 100 |
| abstract_inverted_index.situations. | 139 |
| abstract_inverted_index.inordinately | 24 |
| abstract_inverted_index.generalization | 127, 145 |
| abstract_inverted_index.characteristics | 61 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.5600532 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |