A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.19513
Early detection of fertilizer-induced stress in tomato plants is crucial for optimizing crop yield through timely management interventions. While conventional optical methods struggle to detect fertilizer stress in young leaves, these leaves contain valuable diagnostic information through their microscopic hair-like structures, particularly trichomes, which existing approaches have overlooked. This study introduces a smartphone-based noninvasive technique that leverages mobile computing and digital imaging capabilities to quantify trichome density on young leaves with superior detection latency. Our method uniquely combines augmented reality technology with image processing algorithms to analyze trichomes transferred onto specialized measurement paper. A robust automated pipeline processes these images through region extraction, perspective transformation, and illumination correction to precisely quantify trichome density. Validation experiments on hydroponically grown tomatoes under varying fertilizer conditions demonstrated the method's effectiveness. Leave-one-out cross-validation revealed strong predictive performance with the area under the precision-recall curve (PR-AUC: 0.82) and area under the receiver operating characteristic curve (ROC-AUC: 0.64), while the predicted and observed trichome densities exhibited high correlation ($r = 0.79$). This innovative approach transforms smartphones into precise diagnostic tools for plant nutrition assessment, offering a practical, cost-effective solution for precision agriculture.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.19513
- https://arxiv.org/pdf/2404.19513
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396600750
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396600750Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.19513Digital Object Identifier
- Title
-
A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density MeasurementWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-30Full publication date if available
- Authors
-
Sho Ueda, Xujun YeList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.19513Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.19513Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.19513Direct OA link when available
- Concepts
-
Trichome, Nutrient, Environmental science, Smartphone application, Biology, Computer science, Botany, Ecology, MultimediaTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396600750 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.19513 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.19513 |
| ids.openalex | https://openalex.org/W4396600750 |
| fwci | 0.0 |
| type | preprint |
| title | A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9495999813079834 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9459999799728394 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C56221022 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7747463583946228 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1125215 |
| concepts[0].display_name | Trichome |
| concepts[1].id | https://openalex.org/C142796444 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6330015659332275 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q181394 |
| concepts[1].display_name | Nutrient |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47027212381362915 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C3020250448 |
| concepts[3].level | 2 |
| concepts[3].score | 0.43561968207359314 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q620615 |
| concepts[3].display_name | Smartphone application |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3475598096847534 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3186076879501343 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C59822182 |
| concepts[6].level | 1 |
| concepts[6].score | 0.28549841046333313 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[6].display_name | Botany |
| concepts[7].id | https://openalex.org/C18903297 |
| concepts[7].level | 1 |
| concepts[7].score | 0.20547425746917725 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[7].display_name | Ecology |
| concepts[8].id | https://openalex.org/C49774154 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q131765 |
| concepts[8].display_name | Multimedia |
| keywords[0].id | https://openalex.org/keywords/trichome |
| keywords[0].score | 0.7747463583946228 |
| keywords[0].display_name | Trichome |
| keywords[1].id | https://openalex.org/keywords/nutrient |
| keywords[1].score | 0.6330015659332275 |
| keywords[1].display_name | Nutrient |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.47027212381362915 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/smartphone-application |
| keywords[3].score | 0.43561968207359314 |
| keywords[3].display_name | Smartphone application |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.3475598096847534 |
| keywords[4].display_name | Biology |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3186076879501343 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/botany |
| keywords[6].score | 0.28549841046333313 |
| keywords[6].display_name | Botany |
| keywords[7].id | https://openalex.org/keywords/ecology |
| keywords[7].score | 0.20547425746917725 |
| keywords[7].display_name | Ecology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.19513 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.19513 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.19513 |
| locations[1].id | doi:10.48550/arxiv.2404.19513 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.19513 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5108925756 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-6495-6845 |
| authorships[0].author.display_name | Sho Ueda |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ueda, Sho |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5002160639 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8409-2202 |
| authorships[1].author.display_name | Xujun Ye |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ye, Xujun |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.19513 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9495999813079834 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2356988972, https://openalex.org/W2104032652, https://openalex.org/W2405374521, https://openalex.org/W2795816667, https://openalex.org/W2385117758, https://openalex.org/W2888556706, https://openalex.org/W2359579671, https://openalex.org/W3184617521, https://openalex.org/W2032974690 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.19513 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.19513 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.19513 |
| primary_location.id | pmh:oai:arXiv.org:2404.19513 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.19513 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.19513 |
| publication_date | 2024-04-30 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 163 |
| abstract_inverted_index.A | 93 |
| abstract_inverted_index.a | 51, 179 |
| abstract_inverted_index.in | 5, 27 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 2 |
| abstract_inverted_index.on | 67, 115 |
| abstract_inverted_index.to | 23, 63, 85, 108 |
| abstract_inverted_index.($r | 162 |
| abstract_inverted_index.Our | 74 |
| abstract_inverted_index.and | 59, 105, 142, 155 |
| abstract_inverted_index.for | 10, 174, 183 |
| abstract_inverted_index.the | 124, 134, 137, 145, 153 |
| abstract_inverted_index.This | 48, 165 |
| abstract_inverted_index.area | 135, 143 |
| abstract_inverted_index.crop | 12 |
| abstract_inverted_index.have | 46 |
| abstract_inverted_index.high | 160 |
| abstract_inverted_index.into | 170 |
| abstract_inverted_index.onto | 89 |
| abstract_inverted_index.that | 55 |
| abstract_inverted_index.with | 70, 81, 133 |
| abstract_inverted_index.0.82) | 141 |
| abstract_inverted_index.Early | 0 |
| abstract_inverted_index.While | 18 |
| abstract_inverted_index.curve | 139, 149 |
| abstract_inverted_index.grown | 117 |
| abstract_inverted_index.image | 82 |
| abstract_inverted_index.plant | 175 |
| abstract_inverted_index.study | 49 |
| abstract_inverted_index.their | 37 |
| abstract_inverted_index.these | 30, 98 |
| abstract_inverted_index.tools | 173 |
| abstract_inverted_index.under | 119, 136, 144 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.while | 152 |
| abstract_inverted_index.yield | 13 |
| abstract_inverted_index.young | 28, 68 |
| abstract_inverted_index.0.64), | 151 |
| abstract_inverted_index.detect | 24 |
| abstract_inverted_index.images | 99 |
| abstract_inverted_index.leaves | 31, 69 |
| abstract_inverted_index.method | 75 |
| abstract_inverted_index.mobile | 57 |
| abstract_inverted_index.paper. | 92 |
| abstract_inverted_index.plants | 7 |
| abstract_inverted_index.region | 101 |
| abstract_inverted_index.robust | 94 |
| abstract_inverted_index.stress | 4, 26 |
| abstract_inverted_index.strong | 130 |
| abstract_inverted_index.timely | 15 |
| abstract_inverted_index.tomato | 6 |
| abstract_inverted_index.0.79$). | 164 |
| abstract_inverted_index.analyze | 86 |
| abstract_inverted_index.contain | 32 |
| abstract_inverted_index.crucial | 9 |
| abstract_inverted_index.density | 66 |
| abstract_inverted_index.digital | 60 |
| abstract_inverted_index.imaging | 61 |
| abstract_inverted_index.leaves, | 29 |
| abstract_inverted_index.methods | 21 |
| abstract_inverted_index.optical | 20 |
| abstract_inverted_index.precise | 171 |
| abstract_inverted_index.reality | 79 |
| abstract_inverted_index.through | 14, 36, 100 |
| abstract_inverted_index.varying | 120 |
| abstract_inverted_index.(PR-AUC: | 140 |
| abstract_inverted_index.approach | 167 |
| abstract_inverted_index.combines | 77 |
| abstract_inverted_index.density. | 112 |
| abstract_inverted_index.existing | 44 |
| abstract_inverted_index.latency. | 73 |
| abstract_inverted_index.method's | 125 |
| abstract_inverted_index.observed | 156 |
| abstract_inverted_index.offering | 178 |
| abstract_inverted_index.pipeline | 96 |
| abstract_inverted_index.quantify | 64, 110 |
| abstract_inverted_index.receiver | 146 |
| abstract_inverted_index.revealed | 129 |
| abstract_inverted_index.solution | 182 |
| abstract_inverted_index.struggle | 22 |
| abstract_inverted_index.superior | 71 |
| abstract_inverted_index.tomatoes | 118 |
| abstract_inverted_index.trichome | 65, 111, 157 |
| abstract_inverted_index.uniquely | 76 |
| abstract_inverted_index.valuable | 33 |
| abstract_inverted_index.(ROC-AUC: | 150 |
| abstract_inverted_index.augmented | 78 |
| abstract_inverted_index.automated | 95 |
| abstract_inverted_index.computing | 58 |
| abstract_inverted_index.densities | 158 |
| abstract_inverted_index.detection | 1, 72 |
| abstract_inverted_index.exhibited | 159 |
| abstract_inverted_index.hair-like | 39 |
| abstract_inverted_index.leverages | 56 |
| abstract_inverted_index.nutrition | 176 |
| abstract_inverted_index.operating | 147 |
| abstract_inverted_index.precisely | 109 |
| abstract_inverted_index.precision | 184 |
| abstract_inverted_index.predicted | 154 |
| abstract_inverted_index.processes | 97 |
| abstract_inverted_index.technique | 54 |
| abstract_inverted_index.trichomes | 87 |
| abstract_inverted_index.Validation | 113 |
| abstract_inverted_index.algorithms | 84 |
| abstract_inverted_index.approaches | 45 |
| abstract_inverted_index.conditions | 122 |
| abstract_inverted_index.correction | 107 |
| abstract_inverted_index.diagnostic | 34, 172 |
| abstract_inverted_index.fertilizer | 25, 121 |
| abstract_inverted_index.innovative | 166 |
| abstract_inverted_index.introduces | 50 |
| abstract_inverted_index.management | 16 |
| abstract_inverted_index.optimizing | 11 |
| abstract_inverted_index.practical, | 180 |
| abstract_inverted_index.predictive | 131 |
| abstract_inverted_index.processing | 83 |
| abstract_inverted_index.technology | 80 |
| abstract_inverted_index.transforms | 168 |
| abstract_inverted_index.trichomes, | 42 |
| abstract_inverted_index.assessment, | 177 |
| abstract_inverted_index.correlation | 161 |
| abstract_inverted_index.experiments | 114 |
| abstract_inverted_index.extraction, | 102 |
| abstract_inverted_index.information | 35 |
| abstract_inverted_index.measurement | 91 |
| abstract_inverted_index.microscopic | 38 |
| abstract_inverted_index.noninvasive | 53 |
| abstract_inverted_index.overlooked. | 47 |
| abstract_inverted_index.performance | 132 |
| abstract_inverted_index.perspective | 103 |
| abstract_inverted_index.smartphones | 169 |
| abstract_inverted_index.specialized | 90 |
| abstract_inverted_index.structures, | 40 |
| abstract_inverted_index.transferred | 88 |
| abstract_inverted_index.agriculture. | 185 |
| abstract_inverted_index.capabilities | 62 |
| abstract_inverted_index.conventional | 19 |
| abstract_inverted_index.demonstrated | 123 |
| abstract_inverted_index.illumination | 106 |
| abstract_inverted_index.particularly | 41 |
| abstract_inverted_index.Leave-one-out | 127 |
| abstract_inverted_index.characteristic | 148 |
| abstract_inverted_index.cost-effective | 181 |
| abstract_inverted_index.effectiveness. | 126 |
| abstract_inverted_index.hydroponically | 116 |
| abstract_inverted_index.interventions. | 17 |
| abstract_inverted_index.transformation, | 104 |
| abstract_inverted_index.cross-validation | 128 |
| abstract_inverted_index.precision-recall | 138 |
| abstract_inverted_index.smartphone-based | 52 |
| abstract_inverted_index.fertilizer-induced | 3 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.07134309 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |