A socio-physics based hybrid metaheuristic for solving complex non-convex constrained optimization problems Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-2076260/v1
Several Artificial Intelligence based heuristic and metaheuristic algorithms have been developed so far. These algorithms have shown their superiority towards solving complex problems from different domains. However, it is necessary to critically validate these algorithms for solving real-world constrained optimization problems. The search behavior in those problems is different as it involves large number of linear, nonlinear and non-convex type equality and inequality constraints. In this work a 57 real-world constrained optimization problems test suite is solved using two constrained metaheuristic algorithms originated from a socio-based Cohort Intelligence (CI) algorithm. The first CI-based algorithm incorporates a self-adaptive penalty function approach i.e., CI-SAPF. The second algorithm combines CI-SAPF with the intrinsic properties of the physics-based Colliding Bodies Optimization (CBO) referred to CI-SAPF-CBO. The results obtained from CI-SAPF and CI-SAPF-CBO are compared with other constrained optimization algorithms such as IUDE, ϵMAg-ES and iLSHADE𝜖. The superiority of the proposed algorithms is discussed in details followed by future directions to evolve the constrained handling techniques.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-2076260/v1
- https://www.researchsquare.com/article/rs-2076260/latest.pdf
- OA Status
- green
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297475437
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297475437Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-2076260/v1Digital Object Identifier
- Title
-
A socio-physics based hybrid metaheuristic for solving complex non-convex constrained optimization problemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-28Full publication date if available
- Authors
-
Ishaan R. Kale, Anand J. Kulkarni, Efrén Mezura‐MontesList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-2076260/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-2076260/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-2076260/latest.pdfDirect OA link when available
- Concepts
-
Metaheuristic, Tabu search, Mathematical optimization, Optimization problem, Computer science, Heuristic, Nonlinear system, Algorithm, Mathematics, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297475437 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-2076260/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-2076260/v1 |
| ids.openalex | https://openalex.org/W4297475437 |
| fwci | 0.0 |
| type | preprint |
| title | A socio-physics based hybrid metaheuristic for solving complex non-convex constrained optimization problems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10100 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Metaheuristic Optimization Algorithms Research |
| topics[1].id | https://openalex.org/T10848 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[2].id | https://openalex.org/T10567 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9948999881744385 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Vehicle Routing Optimization Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C109718341 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8267271518707275 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1385229 |
| concepts[0].display_name | Metaheuristic |
| concepts[1].id | https://openalex.org/C123370116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7175875902175903 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1424540 |
| concepts[1].display_name | Tabu search |
| concepts[2].id | https://openalex.org/C126255220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5841430425643921 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[2].display_name | Mathematical optimization |
| concepts[3].id | https://openalex.org/C137836250 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4885002374649048 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[3].display_name | Optimization problem |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4679364860057831 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C173801870 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45003175735473633 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q201413 |
| concepts[5].display_name | Heuristic |
| concepts[6].id | https://openalex.org/C158622935 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44141432642936707 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[6].display_name | Nonlinear system |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41248947381973267 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.31902027130126953 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0645926296710968 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/metaheuristic |
| keywords[0].score | 0.8267271518707275 |
| keywords[0].display_name | Metaheuristic |
| keywords[1].id | https://openalex.org/keywords/tabu-search |
| keywords[1].score | 0.7175875902175903 |
| keywords[1].display_name | Tabu search |
| keywords[2].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[2].score | 0.5841430425643921 |
| keywords[2].display_name | Mathematical optimization |
| keywords[3].id | https://openalex.org/keywords/optimization-problem |
| keywords[3].score | 0.4885002374649048 |
| keywords[3].display_name | Optimization problem |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4679364860057831 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/heuristic |
| keywords[5].score | 0.45003175735473633 |
| keywords[5].display_name | Heuristic |
| keywords[6].id | https://openalex.org/keywords/nonlinear-system |
| keywords[6].score | 0.44141432642936707 |
| keywords[6].display_name | Nonlinear system |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.41248947381973267 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.31902027130126953 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.0645926296710968 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-2076260/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-2076260/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-2076260/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5004794906 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2983-5004 |
| authorships[0].author.display_name | Ishaan R. Kale |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210088227 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Artificial Intelligence, Dr Vishwanath Karad MIT World Peace University, Pune 411 038, MH, INDIA |
| authorships[0].institutions[0].id | https://openalex.org/I4210088227 |
| authorships[0].institutions[0].ror | https://ror.org/004ymxd45 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210088227 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | MIT World Peace University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ishaan R Kale |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Artificial Intelligence, Dr Vishwanath Karad MIT World Peace University, Pune 411 038, MH, INDIA |
| authorships[1].author.id | https://openalex.org/A5080691948 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6242-9492 |
| authorships[1].author.display_name | Anand J. Kulkarni |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210088227 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Artificial Intelligence, Dr Vishwanath Karad MIT World Peace University, Pune 411 038, MH, INDIA |
| authorships[1].institutions[0].id | https://openalex.org/I4210088227 |
| authorships[1].institutions[0].ror | https://ror.org/004ymxd45 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210088227 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | MIT World Peace University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anand J Kulkarni |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Artificial Intelligence, Dr Vishwanath Karad MIT World Peace University, Pune 411 038, MH, INDIA |
| authorships[2].author.id | https://openalex.org/A5058469717 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1565-5267 |
| authorships[2].author.display_name | Efrén Mezura‐Montes |
| authorships[2].countries | MX |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I147280213 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Veracruz |
| authorships[2].institutions[0].id | https://openalex.org/I147280213 |
| authorships[2].institutions[0].ror | https://ror.org/03efxn362 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I147280213 |
| authorships[2].institutions[0].country_code | MX |
| authorships[2].institutions[0].display_name | Universidad Veracruzana |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Efren Mezura-Montes |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Veracruz |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-2076260/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A socio-physics based hybrid metaheuristic for solving complex non-convex constrained optimization problems |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10100 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Metaheuristic Optimization Algorithms Research |
| related_works | https://openalex.org/W2370841265, https://openalex.org/W2612987430, https://openalex.org/W2149620226, https://openalex.org/W2165515547, https://openalex.org/W1750249149, https://openalex.org/W2009686016, https://openalex.org/W2125468861, https://openalex.org/W163561573, https://openalex.org/W1127775809, https://openalex.org/W3166972967 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-2076260/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-2076260/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2076260/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-2076260/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-2076260/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2076260/v1 |
| publication_date | 2022-09-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2631347859, https://openalex.org/W2007351764, https://openalex.org/W2149815769, https://openalex.org/W2175677697, https://openalex.org/W2145479420, https://openalex.org/W1522538275, https://openalex.org/W4292083457, https://openalex.org/W6600459515, https://openalex.org/W2029846254, https://openalex.org/W2093505886, https://openalex.org/W2618778734, https://openalex.org/W3131024162, https://openalex.org/W4205847696, https://openalex.org/W4361230065, https://openalex.org/W4252715873, https://openalex.org/W2079543984, https://openalex.org/W2128105951, https://openalex.org/W2173985512, https://openalex.org/W2523047691, https://openalex.org/W3015290284, https://openalex.org/W2057633737, https://openalex.org/W2050927287, https://openalex.org/W1965049171, https://openalex.org/W994432497, https://openalex.org/W2110368321, https://openalex.org/W4246565613, https://openalex.org/W1887471722, https://openalex.org/W6636919986, https://openalex.org/W2003751475 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 68, 85, 96 |
| abstract_inverted_index.57 | 69 |
| abstract_inverted_index.In | 65 |
| abstract_inverted_index.as | 50, 137 |
| abstract_inverted_index.by | 153 |
| abstract_inverted_index.in | 45, 150 |
| abstract_inverted_index.is | 29, 48, 76, 148 |
| abstract_inverted_index.it | 28, 51 |
| abstract_inverted_index.of | 55, 112, 144 |
| abstract_inverted_index.so | 12 |
| abstract_inverted_index.to | 31, 120, 156 |
| abstract_inverted_index.The | 42, 91, 103, 122, 142 |
| abstract_inverted_index.and | 6, 58, 62, 127, 140 |
| abstract_inverted_index.are | 129 |
| abstract_inverted_index.for | 36 |
| abstract_inverted_index.the | 109, 113, 145, 158 |
| abstract_inverted_index.two | 79 |
| abstract_inverted_index.(CI) | 89 |
| abstract_inverted_index.been | 10 |
| abstract_inverted_index.far. | 13 |
| abstract_inverted_index.from | 24, 84, 125 |
| abstract_inverted_index.have | 9, 16 |
| abstract_inverted_index.such | 136 |
| abstract_inverted_index.test | 74 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.type | 60 |
| abstract_inverted_index.with | 108, 131 |
| abstract_inverted_index.work | 67 |
| abstract_inverted_index.(CBO) | 118 |
| abstract_inverted_index.IUDE, | 138 |
| abstract_inverted_index.These | 14 |
| abstract_inverted_index.based | 4 |
| abstract_inverted_index.first | 92 |
| abstract_inverted_index.i.e., | 101 |
| abstract_inverted_index.large | 53 |
| abstract_inverted_index.other | 132 |
| abstract_inverted_index.shown | 17 |
| abstract_inverted_index.suite | 75 |
| abstract_inverted_index.their | 18 |
| abstract_inverted_index.these | 34 |
| abstract_inverted_index.those | 46 |
| abstract_inverted_index.using | 78 |
| abstract_inverted_index.Bodies | 116 |
| abstract_inverted_index.Cohort | 87 |
| abstract_inverted_index.evolve | 157 |
| abstract_inverted_index.future | 154 |
| abstract_inverted_index.number | 54 |
| abstract_inverted_index.search | 43 |
| abstract_inverted_index.second | 104 |
| abstract_inverted_index.solved | 77 |
| abstract_inverted_index.CI-SAPF | 107, 126 |
| abstract_inverted_index.Several | 1 |
| abstract_inverted_index.complex | 22 |
| abstract_inverted_index.details | 151 |
| abstract_inverted_index.linear, | 56 |
| abstract_inverted_index.penalty | 98 |
| abstract_inverted_index.results | 123 |
| abstract_inverted_index.solving | 21, 37 |
| abstract_inverted_index.towards | 20 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.CI-SAPF. | 102 |
| abstract_inverted_index.CI-based | 93 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.approach | 100 |
| abstract_inverted_index.behavior | 44 |
| abstract_inverted_index.combines | 106 |
| abstract_inverted_index.compared | 130 |
| abstract_inverted_index.domains. | 26 |
| abstract_inverted_index.equality | 61 |
| abstract_inverted_index.followed | 152 |
| abstract_inverted_index.function | 99 |
| abstract_inverted_index.handling | 160 |
| abstract_inverted_index.involves | 52 |
| abstract_inverted_index.obtained | 124 |
| abstract_inverted_index.problems | 23, 47, 73 |
| abstract_inverted_index.proposed | 146 |
| abstract_inverted_index.referred | 119 |
| abstract_inverted_index.validate | 33 |
| abstract_inverted_index.ϵMAg-ES | 139 |
| abstract_inverted_index.Colliding | 115 |
| abstract_inverted_index.algorithm | 94, 105 |
| abstract_inverted_index.developed | 11 |
| abstract_inverted_index.different | 25, 49 |
| abstract_inverted_index.discussed | 149 |
| abstract_inverted_index.heuristic | 5 |
| abstract_inverted_index.intrinsic | 110 |
| abstract_inverted_index.necessary | 30 |
| abstract_inverted_index.nonlinear | 57 |
| abstract_inverted_index.problems. | 41 |
| abstract_inverted_index.Artificial | 2 |
| abstract_inverted_index.algorithm. | 90 |
| abstract_inverted_index.algorithms | 8, 15, 35, 82, 135, 147 |
| abstract_inverted_index.critically | 32 |
| abstract_inverted_index.directions | 155 |
| abstract_inverted_index.inequality | 63 |
| abstract_inverted_index.non-convex | 59 |
| abstract_inverted_index.originated | 83 |
| abstract_inverted_index.properties | 111 |
| abstract_inverted_index.real-world | 38, 70 |
| abstract_inverted_index.CI-SAPF-CBO | 128 |
| abstract_inverted_index.constrained | 39, 71, 80, 133, 159 |
| abstract_inverted_index.socio-based | 86 |
| abstract_inverted_index.superiority | 19, 143 |
| abstract_inverted_index.techniques. | 161 |
| abstract_inverted_index.CI-SAPF-CBO. | 121 |
| abstract_inverted_index.Intelligence | 3, 88 |
| abstract_inverted_index.Optimization | 117 |
| abstract_inverted_index.constraints. | 64 |
| abstract_inverted_index.iLSHADE𝜖. | 141 |
| abstract_inverted_index.incorporates | 95 |
| abstract_inverted_index.optimization | 40, 72, 134 |
| abstract_inverted_index.metaheuristic | 7, 81 |
| abstract_inverted_index.physics-based | 114 |
| abstract_inverted_index.self-adaptive | 97 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[1].score | 0.44999998807907104 |
| sustainable_development_goals[1].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.11326976 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |