A spatial attention guided deep learning system for prediction of pathological complete response using breast cancer histopathology images Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1093/bioinformatics/btac558
Motivation Predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC) patients accurately is direly needed for clinical decision making. pCR is also regarded as a strong predictor of overall survival. In this work, we propose a deep learning system to predict pCR to NAC based on serial pathology images stained with hematoxylin and eosin and two immunohistochemical biomarkers (Ki67 and PHH3). To support human prior domain knowledge-based guidance and enhance interpretability of the deep learning system, we introduce a human knowledge-derived spatial attention mechanism to inform deep learning models of informative tissue areas of interest. For each patient, three serial breast tumor tissue sections from biopsy blocks were sectioned, stained in three different stains and integrated. The resulting comprehensive attention information from the image triplets is used to guide our prediction system for prognostic tissue regions. Results The experimental dataset consists of 26 419 pathology image patches of 1000×1000 pixels from 73 TNBC patients treated with NAC. Image patches from randomly selected 43 patients are used as a training dataset and images patches from the rest 30 are used as a testing dataset. By the maximum voting from patch-level results, our proposed model achieves a 93% patient-level accuracy, outperforming baselines and other state-of-the-art systems, suggesting its high potential for clinical decision making. Availability and implementation The codes, the documentation and example data are available on an open source at: https://github.com/jkonglab/PCR_Prediction_Serial_WSIs_biomarkers Supplementary information Supplementary data are available at Bioinformatics online.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bioinformatics/btac558
- https://academic.oup.com/bioinformatics/article-pdf/38/19/4605/46222009/btac558.pdf
- OA Status
- bronze
- Cited By
- 38
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4291250580
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4291250580Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bioinformatics/btac558Digital Object Identifier
- Title
-
A spatial attention guided deep learning system for prediction of pathological complete response using breast cancer histopathology imagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-13Full publication date if available
- Authors
-
Hongyi Duanmu, Shristi Bhattarai, Hongxiao Li, Zhan Shi, Fusheng Wang, George Teodoro, Keerthi Gogineni, Preeti Subhedar, Umay Kiraz, Emiel A. M. Janssen, Ritu Aneja, Jun KongList of authors in order
- Landing page
-
https://doi.org/10.1093/bioinformatics/btac558Publisher landing page
- PDF URL
-
https://academic.oup.com/bioinformatics/article-pdf/38/19/4605/46222009/btac558.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/bioinformatics/article-pdf/38/19/4605/46222009/btac558.pdfDirect OA link when available
- Concepts
-
Deep learning, Computer science, Artificial intelligence, Digital pathology, H&E stain, Breast cancer, Triple-negative breast cancer, Interpretability, Machine learning, Biopsy, Pattern recognition (psychology), Pathology, Medicine, Cancer, Immunohistochemistry, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
38Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 14, 2024: 15, 2023: 7, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4291250580 |
|---|---|
| doi | https://doi.org/10.1093/bioinformatics/btac558 |
| ids.doi | https://doi.org/10.1093/bioinformatics/btac558 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35962988 |
| ids.openalex | https://openalex.org/W4291250580 |
| fwci | 7.44035517 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D005260 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Female |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D001943 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Breast Neoplasms |
| mesh[3].qualifier_ui | Q000473 |
| mesh[3].descriptor_ui | D001943 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | pathology |
| mesh[3].descriptor_name | Breast Neoplasms |
| mesh[4].qualifier_ui | Q000000981 |
| mesh[4].descriptor_ui | D064726 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | diagnostic imaging |
| mesh[4].descriptor_name | Triple Negative Breast Neoplasms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000077321 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Deep Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D020360 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Neoadjuvant Therapy |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005260 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Female |
| mesh[9].qualifier_ui | Q000000981 |
| mesh[9].descriptor_ui | D001943 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | diagnostic imaging |
| mesh[9].descriptor_name | Breast Neoplasms |
| mesh[10].qualifier_ui | Q000473 |
| mesh[10].descriptor_ui | D001943 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | pathology |
| mesh[10].descriptor_name | Breast Neoplasms |
| mesh[11].qualifier_ui | Q000000981 |
| mesh[11].descriptor_ui | D064726 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | diagnostic imaging |
| mesh[11].descriptor_name | Triple Negative Breast Neoplasms |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000077321 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Deep Learning |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D020360 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Neoadjuvant Therapy |
| type | article |
| title | A spatial attention guided deep learning system for prediction of pathological complete response using breast cancer histopathology images |
| awards[0].id | https://openalex.org/G3377503357 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | R01CA214928 |
| awards[0].funder_display_name | National Institutes of Health |
| awards[1].id | https://openalex.org/G1738682854 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | R01EY028450 |
| awards[1].funder_display_name | National Institutes of Health |
| awards[2].id | https://openalex.org/G1214367810 |
| awards[2].funder_id | https://openalex.org/F4320332161 |
| awards[2].display_name | |
| awards[2].funder_award_id | R01CA239120 |
| awards[2].funder_display_name | National Institutes of Health |
| awards[3].id | https://openalex.org/G1769768118 |
| awards[3].funder_id | https://openalex.org/F4320306076 |
| awards[3].display_name | |
| awards[3].funder_award_id | ACI 1443054 |
| awards[3].funder_display_name | National Science Foundation |
| awards[4].id | https://openalex.org/G296514807 |
| awards[4].funder_id | https://openalex.org/F4320332161 |
| awards[4].display_name | |
| awards[4].funder_award_id | U01CA242936 |
| awards[4].funder_display_name | National Institutes of Health |
| awards[5].id | https://openalex.org/G8155502902 |
| awards[5].funder_id | https://openalex.org/F4320306076 |
| awards[5].display_name | |
| awards[5].funder_award_id | IIS 1350885 |
| awards[5].funder_display_name | National Science Foundation |
| biblio.issue | 19 |
| biblio.volume | 38 |
| biblio.last_page | 4612 |
| biblio.first_page | 4605 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10552 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9872999787330627 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2730 |
| topics[2].subfield.display_name | Oncology |
| topics[2].display_name | Colorectal Cancer Screening and Detection |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320322025 |
| funders[1].ror | https://ror.org/03swz6y49 |
| funders[1].display_name | Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| funders[2].id | https://openalex.org/F4320322980 |
| funders[2].ror | https://ror.org/00nc55f03 |
| funders[2].display_name | Fundação de Amparo à Pesquisa do Estado de Minas Gerais |
| funders[3].id | https://openalex.org/F4320332161 |
| funders[3].ror | https://ror.org/01cwqze88 |
| funders[3].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list.value | 3618 |
| apc_list.currency | USD |
| apc_list.value_usd | 3618 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7430559992790222 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7092150449752808 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.705345630645752 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2777522853 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6821568012237549 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5276128 |
| concepts[3].display_name | Digital pathology |
| concepts[4].id | https://openalex.org/C125473707 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6293290853500366 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9914 |
| concepts[4].display_name | H&E stain |
| concepts[5].id | https://openalex.org/C530470458 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5953664183616638 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[5].display_name | Breast cancer |
| concepts[6].id | https://openalex.org/C2780110267 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5100134611129761 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7843332 |
| concepts[6].display_name | Triple-negative breast cancer |
| concepts[7].id | https://openalex.org/C2781067378 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4984724521636963 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[7].display_name | Interpretability |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.42577287554740906 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C2775934546 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42071953415870667 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q179991 |
| concepts[9].display_name | Biopsy |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3757581412792206 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C142724271 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3688427209854126 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[11].display_name | Pathology |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.33938831090927124 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C121608353 |
| concepts[13].level | 2 |
| concepts[13].score | 0.309180349111557 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[13].display_name | Cancer |
| concepts[14].id | https://openalex.org/C204232928 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2263260781764984 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q899285 |
| concepts[14].display_name | Immunohistochemistry |
| concepts[15].id | https://openalex.org/C126322002 |
| concepts[15].level | 1 |
| concepts[15].score | 0.10081055760383606 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[15].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.7430559992790222 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7092150449752808 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.705345630645752 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/digital-pathology |
| keywords[3].score | 0.6821568012237549 |
| keywords[3].display_name | Digital pathology |
| keywords[4].id | https://openalex.org/keywords/h-e-stain |
| keywords[4].score | 0.6293290853500366 |
| keywords[4].display_name | H&E stain |
| keywords[5].id | https://openalex.org/keywords/breast-cancer |
| keywords[5].score | 0.5953664183616638 |
| keywords[5].display_name | Breast cancer |
| keywords[6].id | https://openalex.org/keywords/triple-negative-breast-cancer |
| keywords[6].score | 0.5100134611129761 |
| keywords[6].display_name | Triple-negative breast cancer |
| keywords[7].id | https://openalex.org/keywords/interpretability |
| keywords[7].score | 0.4984724521636963 |
| keywords[7].display_name | Interpretability |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.42577287554740906 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/biopsy |
| keywords[9].score | 0.42071953415870667 |
| keywords[9].display_name | Biopsy |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3757581412792206 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/pathology |
| keywords[11].score | 0.3688427209854126 |
| keywords[11].display_name | Pathology |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.33938831090927124 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/cancer |
| keywords[13].score | 0.309180349111557 |
| keywords[13].display_name | Cancer |
| keywords[14].id | https://openalex.org/keywords/immunohistochemistry |
| keywords[14].score | 0.2263260781764984 |
| keywords[14].display_name | Immunohistochemistry |
| keywords[15].id | https://openalex.org/keywords/internal-medicine |
| keywords[15].score | 0.10081055760383606 |
| keywords[15].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1093/bioinformatics/btac558 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S52395412 |
| locations[0].source.issn | 1367-4803, 1367-4811 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1367-4803 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | https://academic.oup.com/bioinformatics/article-pdf/38/19/4605/46222009/btac558.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bioinformatics/btac558 |
| locations[1].id | pmid:35962988 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioinformatics (Oxford, England) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35962988 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9525016 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Bioinformatics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9525016 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5090147550 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5707-0515 |
| authorships[0].author.display_name | Hongyi Duanmu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Stony Brook University , Stony Brook, NY, USA |
| authorships[0].institutions[0].id | https://openalex.org/I59553526 |
| authorships[0].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Stony Brook University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hongyi Duanmu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Stony Brook University , Stony Brook, NY, USA |
| authorships[1].author.id | https://openalex.org/A5101509673 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6639-057X |
| authorships[1].author.display_name | Shristi Bhattarai |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I181565077 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biology, Georgia State University , Atlanta, GA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I181565077 |
| authorships[1].institutions[0].ror | https://ror.org/03qt6ba18 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I181565077 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Georgia State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shristi Bhattarai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biology, Georgia State University , Atlanta, GA, USA |
| authorships[2].author.id | https://openalex.org/A5101824486 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6114-8215 |
| authorships[2].author.display_name | Hongxiao Li |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I181565077 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics and Computer Science, Georgia State University , Atlanta, GA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I181565077 |
| authorships[2].institutions[0].ror | https://ror.org/03qt6ba18 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I181565077 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Georgia State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hongxiao Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics and Statistics and Computer Science, Georgia State University , Atlanta, GA, USA |
| authorships[3].author.id | https://openalex.org/A5086314063 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7798-1121 |
| authorships[3].author.display_name | Zhan Shi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, Stony Brook University , Stony Brook, NY, USA |
| authorships[3].institutions[0].id | https://openalex.org/I59553526 |
| authorships[3].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Stony Brook University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhan Shi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, Stony Brook University , Stony Brook, NY, USA |
| authorships[4].author.id | https://openalex.org/A5100704639 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9369-9361 |
| authorships[4].author.display_name | Fusheng Wang |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, Stony Brook University , Stony Brook, NY, USA |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I59553526 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Biomedical Informatics, Stony Brook University , Stony Brook, NY, USA |
| authorships[4].institutions[0].id | https://openalex.org/I59553526 |
| authorships[4].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Stony Brook University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fusheng Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biomedical Informatics, Stony Brook University , Stony Brook, NY, USA, Department of Computer Science, Stony Brook University , Stony Brook, NY, USA |
| authorships[5].author.id | https://openalex.org/A5076465098 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6289-3914 |
| authorships[5].author.display_name | George Teodoro |
| authorships[5].countries | BR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I110200422 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science, Federal University of Minas Gerais , Belo Horizonte, MG, Brazil |
| authorships[5].institutions[0].id | https://openalex.org/I110200422 |
| authorships[5].institutions[0].ror | https://ror.org/0176yjw32 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I110200422 |
| authorships[5].institutions[0].country_code | BR |
| authorships[5].institutions[0].display_name | Universidade Federal de Minas Gerais |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | George Teodoro |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science, Federal University of Minas Gerais , Belo Horizonte, MG, Brazil |
| authorships[6].author.id | https://openalex.org/A5078752481 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9822-797X |
| authorships[6].author.display_name | Keerthi Gogineni |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210092882 |
| authorships[6].affiliations[0].raw_affiliation_string | Georgia Cancer Center for Excellence, Grady Health System , Atlanta, GA, USA |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I150468666 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Surgery, Winship Cancer Institute, Emory University School of Medicine , Atlanta, GA, USA |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I150468666 |
| authorships[6].affiliations[2].raw_affiliation_string | Department of Hematology-Medical Oncology, Winship Cancer Institute, Emory University School of Medicine , Atlanta, GA, USA |
| authorships[6].institutions[0].id | https://openalex.org/I150468666 |
| authorships[6].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Emory University |
| authorships[6].institutions[1].id | https://openalex.org/I4210092882 |
| authorships[6].institutions[1].ror | https://ror.org/00k1xr956 |
| authorships[6].institutions[1].type | healthcare |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210092882 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Grady Health System |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Keerthi Gogineni |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Hematology-Medical Oncology, Winship Cancer Institute, Emory University School of Medicine , Atlanta, GA, USA, Department of Surgery, Winship Cancer Institute, Emory University School of Medicine , Atlanta, GA, USA, Georgia Cancer Center for Excellence, Grady Health System , Atlanta, GA, USA |
| authorships[7].author.id | https://openalex.org/A5042955897 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4527-0402 |
| authorships[7].author.display_name | Preeti Subhedar |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210092882 |
| authorships[7].affiliations[0].raw_affiliation_string | Georgia Cancer Center for Excellence, Grady Health System , Atlanta, GA, USA |
| authorships[7].institutions[0].id | https://openalex.org/I4210092882 |
| authorships[7].institutions[0].ror | https://ror.org/00k1xr956 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210092882 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Grady Health System |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Preeti Subhedar |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Georgia Cancer Center for Excellence, Grady Health System , Atlanta, GA, USA |
| authorships[8].author.id | https://openalex.org/A5025905653 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6721-4877 |
| authorships[8].author.display_name | Umay Kiraz |
| authorships[8].countries | NO |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I2800132241 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Pathology, Stavanger University Hospital , Stavanger, Norway |
| authorships[8].institutions[0].id | https://openalex.org/I2800132241 |
| authorships[8].institutions[0].ror | https://ror.org/04zn72g03 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I2800132241 |
| authorships[8].institutions[0].country_code | NO |
| authorships[8].institutions[0].display_name | Stavanger University Hospital |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Umay Kiraz |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Pathology, Stavanger University Hospital , Stavanger, Norway |
| authorships[9].author.id | https://openalex.org/A5003110329 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-7760-5396 |
| authorships[9].author.display_name | Emiel A. M. Janssen |
| authorships[9].countries | NO |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I2800132241 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Pathology, Stavanger University Hospital , Stavanger, Norway |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I92008406 |
| authorships[9].affiliations[1].raw_affiliation_string | Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger , Stavanger, Norway |
| authorships[9].institutions[0].id | https://openalex.org/I2800132241 |
| authorships[9].institutions[0].ror | https://ror.org/04zn72g03 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I2800132241 |
| authorships[9].institutions[0].country_code | NO |
| authorships[9].institutions[0].display_name | Stavanger University Hospital |
| authorships[9].institutions[1].id | https://openalex.org/I92008406 |
| authorships[9].institutions[1].ror | https://ror.org/02qte9q33 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I92008406 |
| authorships[9].institutions[1].country_code | NO |
| authorships[9].institutions[1].display_name | University of Stavanger |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Emiel A M Janssen |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger , Stavanger, Norway, Department of Pathology, Stavanger University Hospital , Stavanger, Norway |
| authorships[10].author.id | https://openalex.org/A5019846100 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-4489-5320 |
| authorships[10].author.display_name | Ritu Aneja |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I32389192 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham , Birmingham, AL, USA |
| authorships[10].institutions[0].id | https://openalex.org/I32389192 |
| authorships[10].institutions[0].ror | https://ror.org/008s83205 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I32389192 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | University of Alabama at Birmingham |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Ritu Aneja |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham , Birmingham, AL, USA |
| authorships[11].author.id | https://openalex.org/A5066949209 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-8757-8339 |
| authorships[11].author.display_name | Jun Kong |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I181565077 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics and Computer Science, Georgia State University , Atlanta, GA, USA |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I150468666 |
| authorships[11].affiliations[1].raw_affiliation_string | Winship Cancer Institute, Emory University , Atlanta, GA, USA |
| authorships[11].institutions[0].id | https://openalex.org/I150468666 |
| authorships[11].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Emory University |
| authorships[11].institutions[1].id | https://openalex.org/I181565077 |
| authorships[11].institutions[1].ror | https://ror.org/03qt6ba18 |
| authorships[11].institutions[1].type | education |
| authorships[11].institutions[1].lineage | https://openalex.org/I181565077 |
| authorships[11].institutions[1].country_code | US |
| authorships[11].institutions[1].display_name | Georgia State University |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Jun Kong |
| authorships[11].is_corresponding | True |
| authorships[11].raw_affiliation_strings | Department of Mathematics and Statistics and Computer Science, Georgia State University , Atlanta, GA, USA, Winship Cancer Institute, Emory University , Atlanta, GA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/bioinformatics/article-pdf/38/19/4605/46222009/btac558.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A spatial attention guided deep learning system for prediction of pathological complete response using breast cancer histopathology images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W2065857975, https://openalex.org/W4386103331, https://openalex.org/W3012179402, https://openalex.org/W4214718886, https://openalex.org/W2125942968, https://openalex.org/W4288034278, https://openalex.org/W4387618892, https://openalex.org/W4378952948 |
| cited_by_count | 38 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 14 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 15 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/bioinformatics/btac558 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S52395412 |
| best_oa_location.source.issn | 1367-4803, 1367-4811 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1367-4803 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://academic.oup.com/bioinformatics/article-pdf/38/19/4605/46222009/btac558.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btac558 |
| primary_location.id | doi:10.1093/bioinformatics/btac558 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S52395412 |
| primary_location.source.issn | 1367-4803, 1367-4811 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1367-4803 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | https://academic.oup.com/bioinformatics/article-pdf/38/19/4605/46222009/btac558.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btac558 |
| publication_date | 2022-08-13 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2279691757, https://openalex.org/W2615533737, https://openalex.org/W2894845372, https://openalex.org/W2075894019, https://openalex.org/W2005895632, https://openalex.org/W953560957, https://openalex.org/W2001968322, https://openalex.org/W1551111627, https://openalex.org/W1597336200, https://openalex.org/W3125885873, https://openalex.org/W3164925589, https://openalex.org/W2467126091, https://openalex.org/W2302409806, https://openalex.org/W2919115771, https://openalex.org/W3211240094, https://openalex.org/W3002866765, https://openalex.org/W2118605519, https://openalex.org/W2081177143, https://openalex.org/W3207108953, https://openalex.org/W3019909811, https://openalex.org/W6802885329, https://openalex.org/W2068554135, https://openalex.org/W2139416101, https://openalex.org/W6635816984, https://openalex.org/W2533800772, https://openalex.org/W2147415463, https://openalex.org/W3137476832, https://openalex.org/W3043535018, https://openalex.org/W6697443983, https://openalex.org/W2970546341, https://openalex.org/W2628196379, https://openalex.org/W3105445034, https://openalex.org/W2295107390, https://openalex.org/W4287533506, https://openalex.org/W3101310341, https://openalex.org/W3202997066 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 30, 41, 84, 173, 186, 200 |
| abstract_inverted_index.26 | 148 |
| abstract_inverted_index.30 | 182 |
| abstract_inverted_index.43 | 168 |
| abstract_inverted_index.73 | 157 |
| abstract_inverted_index.By | 189 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.To | 67 |
| abstract_inverted_index.an | 231 |
| abstract_inverted_index.as | 29, 172, 185 |
| abstract_inverted_index.at | 242 |
| abstract_inverted_index.in | 11, 116 |
| abstract_inverted_index.is | 18, 26, 131 |
| abstract_inverted_index.of | 33, 77, 95, 99, 147, 153 |
| abstract_inverted_index.on | 51, 230 |
| abstract_inverted_index.to | 7, 45, 48, 90, 133 |
| abstract_inverted_index.we | 39, 82 |
| abstract_inverted_index.419 | 149 |
| abstract_inverted_index.93% | 201 |
| abstract_inverted_index.For | 101 |
| abstract_inverted_index.NAC | 49 |
| abstract_inverted_index.The | 122, 143, 221 |
| abstract_inverted_index.and | 58, 60, 65, 74, 120, 176, 206, 219, 225 |
| abstract_inverted_index.are | 170, 183, 228, 240 |
| abstract_inverted_index.at: | 234 |
| abstract_inverted_index.for | 21, 138, 214 |
| abstract_inverted_index.its | 211 |
| abstract_inverted_index.our | 135, 196 |
| abstract_inverted_index.pCR | 25, 47 |
| abstract_inverted_index.the | 78, 128, 180, 190, 223 |
| abstract_inverted_index.two | 61 |
| abstract_inverted_index.NAC. | 162 |
| abstract_inverted_index.TNBC | 158 |
| abstract_inverted_index.also | 27 |
| abstract_inverted_index.data | 227, 239 |
| abstract_inverted_index.deep | 42, 79, 92 |
| abstract_inverted_index.each | 102 |
| abstract_inverted_index.from | 110, 127, 156, 165, 179, 193 |
| abstract_inverted_index.high | 212 |
| abstract_inverted_index.open | 232 |
| abstract_inverted_index.rest | 181 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.used | 132, 171, 184 |
| abstract_inverted_index.were | 113 |
| abstract_inverted_index.with | 56, 161 |
| abstract_inverted_index.(Ki67 | 64 |
| abstract_inverted_index.(NAC) | 10 |
| abstract_inverted_index.(pCR) | 6 |
| abstract_inverted_index.Image | 163 |
| abstract_inverted_index.areas | 98 |
| abstract_inverted_index.based | 50 |
| abstract_inverted_index.eosin | 59 |
| abstract_inverted_index.guide | 134 |
| abstract_inverted_index.human | 69, 85 |
| abstract_inverted_index.image | 129, 151 |
| abstract_inverted_index.model | 198 |
| abstract_inverted_index.other | 207 |
| abstract_inverted_index.prior | 70 |
| abstract_inverted_index.three | 104, 117 |
| abstract_inverted_index.tumor | 107 |
| abstract_inverted_index.work, | 38 |
| abstract_inverted_index.(TNBC) | 15 |
| abstract_inverted_index.PHH3). | 66 |
| abstract_inverted_index.biopsy | 111 |
| abstract_inverted_index.blocks | 112 |
| abstract_inverted_index.breast | 13, 106 |
| abstract_inverted_index.cancer | 14 |
| abstract_inverted_index.codes, | 222 |
| abstract_inverted_index.direly | 19 |
| abstract_inverted_index.domain | 71 |
| abstract_inverted_index.images | 54, 177 |
| abstract_inverted_index.inform | 91 |
| abstract_inverted_index.models | 94 |
| abstract_inverted_index.needed | 20 |
| abstract_inverted_index.pixels | 155 |
| abstract_inverted_index.serial | 52, 105 |
| abstract_inverted_index.source | 233 |
| abstract_inverted_index.stains | 119 |
| abstract_inverted_index.strong | 31 |
| abstract_inverted_index.system | 44, 137 |
| abstract_inverted_index.tissue | 97, 108, 140 |
| abstract_inverted_index.voting | 192 |
| abstract_inverted_index.Results | 142 |
| abstract_inverted_index.dataset | 145, 175 |
| abstract_inverted_index.enhance | 75 |
| abstract_inverted_index.example | 226 |
| abstract_inverted_index.making. | 24, 217 |
| abstract_inverted_index.maximum | 191 |
| abstract_inverted_index.online. | 244 |
| abstract_inverted_index.overall | 34 |
| abstract_inverted_index.patches | 152, 164, 178 |
| abstract_inverted_index.predict | 46 |
| abstract_inverted_index.propose | 40 |
| abstract_inverted_index.spatial | 87 |
| abstract_inverted_index.stained | 55, 115 |
| abstract_inverted_index.support | 68 |
| abstract_inverted_index.system, | 81 |
| abstract_inverted_index.testing | 187 |
| abstract_inverted_index.treated | 160 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.achieves | 199 |
| abstract_inverted_index.clinical | 22, 215 |
| abstract_inverted_index.complete | 4 |
| abstract_inverted_index.consists | 146 |
| abstract_inverted_index.dataset. | 188 |
| abstract_inverted_index.decision | 23, 216 |
| abstract_inverted_index.guidance | 73 |
| abstract_inverted_index.learning | 43, 80, 93 |
| abstract_inverted_index.patient, | 103 |
| abstract_inverted_index.patients | 16, 159, 169 |
| abstract_inverted_index.proposed | 197 |
| abstract_inverted_index.randomly | 166 |
| abstract_inverted_index.regarded | 28 |
| abstract_inverted_index.regions. | 141 |
| abstract_inverted_index.response | 5 |
| abstract_inverted_index.results, | 195 |
| abstract_inverted_index.sections | 109 |
| abstract_inverted_index.selected | 167 |
| abstract_inverted_index.systems, | 209 |
| abstract_inverted_index.training | 174 |
| abstract_inverted_index.triplets | 130 |
| abstract_inverted_index.accuracy, | 203 |
| abstract_inverted_index.attention | 88, 125 |
| abstract_inverted_index.available | 229, 241 |
| abstract_inverted_index.baselines | 205 |
| abstract_inverted_index.different | 118 |
| abstract_inverted_index.interest. | 100 |
| abstract_inverted_index.introduce | 83 |
| abstract_inverted_index.mechanism | 89 |
| abstract_inverted_index.pathology | 53, 150 |
| abstract_inverted_index.potential | 213 |
| abstract_inverted_index.predictor | 32 |
| abstract_inverted_index.resulting | 123 |
| abstract_inverted_index.survival. | 35 |
| abstract_inverted_index.1000×1000 | 154 |
| abstract_inverted_index.Motivation | 1 |
| abstract_inverted_index.Predicting | 2 |
| abstract_inverted_index.accurately | 17 |
| abstract_inverted_index.biomarkers | 63 |
| abstract_inverted_index.prediction | 136 |
| abstract_inverted_index.prognostic | 139 |
| abstract_inverted_index.sectioned, | 114 |
| abstract_inverted_index.suggesting | 210 |
| abstract_inverted_index.hematoxylin | 57 |
| abstract_inverted_index.information | 126, 237 |
| abstract_inverted_index.informative | 96 |
| abstract_inverted_index.integrated. | 121 |
| abstract_inverted_index.neoadjuvant | 8 |
| abstract_inverted_index.patch-level | 194 |
| abstract_inverted_index.Availability | 218 |
| abstract_inverted_index.chemotherapy | 9 |
| abstract_inverted_index.experimental | 144 |
| abstract_inverted_index.pathological | 3 |
| abstract_inverted_index.Supplementary | 236, 238 |
| abstract_inverted_index.comprehensive | 124 |
| abstract_inverted_index.documentation | 224 |
| abstract_inverted_index.outperforming | 204 |
| abstract_inverted_index.patient-level | 202 |
| abstract_inverted_index.Bioinformatics | 243 |
| abstract_inverted_index.implementation | 220 |
| abstract_inverted_index.knowledge-based | 72 |
| abstract_inverted_index.triple-negative | 12 |
| abstract_inverted_index.interpretability | 76 |
| abstract_inverted_index.state-of-the-art | 208 |
| abstract_inverted_index.knowledge-derived | 86 |
| abstract_inverted_index.immunohistochemical | 62 |
| abstract_inverted_index.https://github.com/jkonglab/PCR_Prediction_Serial_WSIs_biomarkers | 235 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5090147550, https://openalex.org/A5066949209 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I150468666, https://openalex.org/I181565077, https://openalex.org/I59553526 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.96339403 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |