A spatial–spectral adaptive learning model for textile defect images recognition with few labeled data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s40747-023-01070-y
Textile defect recognition is a significant technique in the production processes of the textile industry. However, in the practical processes, it is hard to acquire large amounts of textile defect samples. Meanwhile, the textile samples with correct defect labels are rare. To address these two limitations, in this paper, we propose a novel semi-supervised graph convolutional network for few labeled textile defect recognition. First, we construct the graph convolutional network and convolution neural network to extract spectral features and spatial features. Second, the adaptive convolution structure is proposed to generate adaptive kernels according to their dynamically learned features. Finally, the spatial–spectral adaptive unified learning network (SSA-ULNet) is built for limited labeled defective samples, and graph-based semi-supervised learning is constructed. The textile defect recognition model can extract the textile image features through the image descriptors, enabling the whole network to be end-to-end trainable. To evaluate the proposed method, one public dataset and two unique self-built textile defect datasets are used to textile defect recognition. The evaluation results demonstrate that the proposed SSA-ULNet obviously outperforms existing state-of-the-art deep learning methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s40747-023-01070-y
- https://link.springer.com/content/pdf/10.1007/s40747-023-01070-y.pdf
- OA Status
- gold
- Cited By
- 7
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382178113
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382178113Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s40747-023-01070-yDigital Object Identifier
- Title
-
A spatial–spectral adaptive learning model for textile defect images recognition with few labeled dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-08Full publication date if available
- Authors
-
Yuan Zhang, Tao Han, Bing Wei, Kuangrong Hao, Lei GaoList of authors in order
- Landing page
-
https://doi.org/10.1007/s40747-023-01070-yPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s40747-023-01070-y.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s40747-023-01070-y.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Pattern recognition (psychology), Convolution (computer science), Convolutional neural network, Computer science, Graph, Textile, Deep learning, Artificial neural network, Machine learning, Materials science, Theoretical computer science, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382178113 |
|---|---|
| doi | https://doi.org/10.1007/s40747-023-01070-y |
| ids.doi | https://doi.org/10.1007/s40747-023-01070-y |
| ids.openalex | https://openalex.org/W4382178113 |
| fwci | 1.99859609 |
| type | article |
| title | A spatial–spectral adaptive learning model for textile defect images recognition with few labeled data |
| awards[0].id | https://openalex.org/G5562433879 |
| awards[0].funder_id | https://openalex.org/F4320309612 |
| awards[0].display_name | |
| awards[0].funder_award_id | 20ZR1400400 |
| awards[0].funder_display_name | Natural Science Foundation of Shanghai |
| biblio.issue | 6 |
| biblio.volume | 9 |
| biblio.last_page | 6371 |
| biblio.first_page | 6359 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T13049 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9749000072479248 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Surface Roughness and Optical Measurements |
| topics[2].id | https://openalex.org/T11595 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9692999720573425 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2507 |
| topics[2].subfield.display_name | Polymers and Plastics |
| topics[2].display_name | Textile materials and evaluations |
| funders[0].id | https://openalex.org/F4320309612 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Shanghai |
| is_xpac | False |
| apc_list.value | 1320 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1619 |
| apc_paid.value | 1320 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1619 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7725366950035095 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7385127544403076 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C45347329 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6733177304267883 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[2].display_name | Convolution (computer science) |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6615411639213562 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6542130708694458 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6320590972900391 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C164767435 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5640103220939636 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q28823 |
| concepts[6].display_name | Textile |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4822162389755249 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45712703466415405 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33368003368377686 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C192562407 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1268301010131836 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[10].display_name | Materials science |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.06084820628166199 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C159985019 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[12].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7725366950035095 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.7385127544403076 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/convolution |
| keywords[2].score | 0.6733177304267883 |
| keywords[2].display_name | Convolution (computer science) |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6615411639213562 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6542130708694458 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.6320590972900391 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/textile |
| keywords[6].score | 0.5640103220939636 |
| keywords[6].display_name | Textile |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.4822162389755249 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.45712703466415405 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.33368003368377686 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/materials-science |
| keywords[10].score | 0.1268301010131836 |
| keywords[10].display_name | Materials science |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.06084820628166199 |
| keywords[11].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.1007/s40747-023-01070-y |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3035462843 |
| locations[0].source.issn | 2198-6053, 2199-4536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2198-6053 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Complex & Intelligent Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01070-y.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Complex & Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s40747-023-01070-y |
| locations[1].id | pmh:oai:doaj.org/article:611f295e60914ecba4ee18c20d01cd07 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Complex & Intelligent Systems, Vol 9, Iss 6, Pp 6359-6371 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/611f295e60914ecba4ee18c20d01cd07 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100368749 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0032-8631 |
| authorships[0].author.display_name | Yuan Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210136246, https://openalex.org/I4387153335 |
| authorships[0].affiliations[0].raw_affiliation_string | China Telecom Research Institute, Shanghai, 200122, China |
| authorships[0].institutions[0].id | https://openalex.org/I4387153335 |
| authorships[0].institutions[0].ror | https://ror.org/05p67dv18 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4387153335 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | China Telecom |
| authorships[0].institutions[1].id | https://openalex.org/I4210136246 |
| authorships[0].institutions[1].ror | https://ror.org/03jgnzt20 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210136246 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | China Telecom (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuan Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | China Telecom Research Institute, Shanghai, 200122, China |
| authorships[1].author.id | https://openalex.org/A5101962758 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7100-3979 |
| authorships[1].author.display_name | Tao Han |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210136246, https://openalex.org/I4387153335 |
| authorships[1].affiliations[0].raw_affiliation_string | China Telecom Research Institute, Shanghai, 200122, China |
| authorships[1].institutions[0].id | https://openalex.org/I4387153335 |
| authorships[1].institutions[0].ror | https://ror.org/05p67dv18 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4387153335 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | China Telecom |
| authorships[1].institutions[1].id | https://openalex.org/I4210136246 |
| authorships[1].institutions[1].ror | https://ror.org/03jgnzt20 |
| authorships[1].institutions[1].type | company |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210136246 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | China Telecom (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tao Han |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | China Telecom Research Institute, Shanghai, 200122, China |
| authorships[2].author.id | https://openalex.org/A5064572247 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2298-1474 |
| authorships[2].author.display_name | Bing Wei |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I181326427 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Information Sciences and Technology, Donghua University, Shanghai, 201620, China |
| authorships[2].institutions[0].id | https://openalex.org/I181326427 |
| authorships[2].institutions[0].ror | https://ror.org/035psfh38 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I181326427 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Donghua University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bing Wei |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Information Sciences and Technology, Donghua University, Shanghai, 201620, China |
| authorships[3].author.id | https://openalex.org/A5001762132 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9672-6161 |
| authorships[3].author.display_name | Kuangrong Hao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I181326427 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Information Sciences and Technology, Donghua University, Shanghai, 201620, China |
| authorships[3].institutions[0].id | https://openalex.org/I181326427 |
| authorships[3].institutions[0].ror | https://ror.org/035psfh38 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I181326427 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Donghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kuangrong Hao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Information Sciences and Technology, Donghua University, Shanghai, 201620, China |
| authorships[4].author.id | https://openalex.org/A5002631807 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4272-9417 |
| authorships[4].author.display_name | Lei Gao |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1292875679 |
| authorships[4].affiliations[0].raw_affiliation_string | Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, 5064, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I1292875679 |
| authorships[4].institutions[0].ror | https://ror.org/03qn8fb07 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I4387156119 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Commonwealth Scientific and Industrial Research Organisation |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Lei Gao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, 5064, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01070-y.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A spatial–spectral adaptive learning model for textile defect images recognition with few labeled data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W3193374793, https://openalex.org/W4293226380, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W3167935049, https://openalex.org/W2964954556, https://openalex.org/W3029198973, https://openalex.org/W3019910406 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s40747-023-01070-y |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3035462843 |
| best_oa_location.source.issn | 2198-6053, 2199-4536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2198-6053 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Complex & Intelligent Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01070-y.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Complex & Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s40747-023-01070-y |
| primary_location.id | doi:10.1007/s40747-023-01070-y |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3035462843 |
| primary_location.source.issn | 2198-6053, 2199-4536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2198-6053 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Complex & Intelligent Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01070-y.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Complex & Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s40747-023-01070-y |
| publication_date | 2023-05-08 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2070407351, https://openalex.org/W2031821661, https://openalex.org/W2005219590, https://openalex.org/W3024155585, https://openalex.org/W4224256886, https://openalex.org/W2902856291, https://openalex.org/W3119138911, https://openalex.org/W2588054711, https://openalex.org/W3204243169, https://openalex.org/W4281609905, https://openalex.org/W3205396611, https://openalex.org/W4205553873, https://openalex.org/W4220788271, https://openalex.org/W4226063172, https://openalex.org/W3019023591, https://openalex.org/W3162910509, https://openalex.org/W2344428106, https://openalex.org/W2791709739, https://openalex.org/W2981845603, https://openalex.org/W3037175147, https://openalex.org/W3031794591, https://openalex.org/W3009352350, https://openalex.org/W4214530812, https://openalex.org/W2963156262, https://openalex.org/W2994817145, https://openalex.org/W2907868778, https://openalex.org/W3093583063, https://openalex.org/W3092285835, https://openalex.org/W2907147407, https://openalex.org/W3047443805, https://openalex.org/W3045603631, https://openalex.org/W2752782242, https://openalex.org/W3039975350, https://openalex.org/W3026881828, https://openalex.org/W2531409750, https://openalex.org/W4205482611, https://openalex.org/W3103695279 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 5, 52 |
| abstract_inverted_index.To | 42, 143 |
| abstract_inverted_index.be | 140 |
| abstract_inverted_index.in | 8, 17, 47 |
| abstract_inverted_index.is | 4, 22, 87, 107, 118 |
| abstract_inverted_index.it | 21 |
| abstract_inverted_index.of | 12, 28 |
| abstract_inverted_index.to | 24, 75, 89, 94, 139, 160 |
| abstract_inverted_index.we | 50, 65 |
| abstract_inverted_index.The | 120, 164 |
| abstract_inverted_index.and | 71, 79, 114, 151 |
| abstract_inverted_index.are | 40, 158 |
| abstract_inverted_index.can | 125 |
| abstract_inverted_index.few | 59 |
| abstract_inverted_index.for | 58, 109 |
| abstract_inverted_index.one | 148 |
| abstract_inverted_index.the | 9, 13, 18, 33, 67, 83, 100, 127, 132, 136, 145, 169 |
| abstract_inverted_index.two | 45, 152 |
| abstract_inverted_index.deep | 176 |
| abstract_inverted_index.hard | 23 |
| abstract_inverted_index.that | 168 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.used | 159 |
| abstract_inverted_index.with | 36 |
| abstract_inverted_index.built | 108 |
| abstract_inverted_index.graph | 55, 68 |
| abstract_inverted_index.image | 129, 133 |
| abstract_inverted_index.large | 26 |
| abstract_inverted_index.model | 124 |
| abstract_inverted_index.novel | 53 |
| abstract_inverted_index.rare. | 41 |
| abstract_inverted_index.their | 95 |
| abstract_inverted_index.these | 44 |
| abstract_inverted_index.whole | 137 |
| abstract_inverted_index.First, | 64 |
| abstract_inverted_index.defect | 2, 30, 38, 62, 122, 156, 162 |
| abstract_inverted_index.labels | 39 |
| abstract_inverted_index.neural | 73 |
| abstract_inverted_index.paper, | 49 |
| abstract_inverted_index.public | 149 |
| abstract_inverted_index.unique | 153 |
| abstract_inverted_index.Second, | 82 |
| abstract_inverted_index.Textile | 1 |
| abstract_inverted_index.acquire | 25 |
| abstract_inverted_index.address | 43 |
| abstract_inverted_index.amounts | 27 |
| abstract_inverted_index.correct | 37 |
| abstract_inverted_index.dataset | 150 |
| abstract_inverted_index.extract | 76, 126 |
| abstract_inverted_index.kernels | 92 |
| abstract_inverted_index.labeled | 60, 111 |
| abstract_inverted_index.learned | 97 |
| abstract_inverted_index.limited | 110 |
| abstract_inverted_index.method, | 147 |
| abstract_inverted_index.network | 57, 70, 74, 105, 138 |
| abstract_inverted_index.propose | 51 |
| abstract_inverted_index.results | 166 |
| abstract_inverted_index.samples | 35 |
| abstract_inverted_index.spatial | 80 |
| abstract_inverted_index.textile | 14, 29, 34, 61, 121, 128, 155, 161 |
| abstract_inverted_index.through | 131 |
| abstract_inverted_index.unified | 103 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 99 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.adaptive | 84, 91, 102 |
| abstract_inverted_index.datasets | 157 |
| abstract_inverted_index.enabling | 135 |
| abstract_inverted_index.evaluate | 144 |
| abstract_inverted_index.existing | 174 |
| abstract_inverted_index.features | 78, 130 |
| abstract_inverted_index.generate | 90 |
| abstract_inverted_index.learning | 104, 117, 177 |
| abstract_inverted_index.methods. | 178 |
| abstract_inverted_index.proposed | 88, 146, 170 |
| abstract_inverted_index.samples, | 113 |
| abstract_inverted_index.samples. | 31 |
| abstract_inverted_index.spectral | 77 |
| abstract_inverted_index.SSA-ULNet | 171 |
| abstract_inverted_index.according | 93 |
| abstract_inverted_index.construct | 66 |
| abstract_inverted_index.defective | 112 |
| abstract_inverted_index.features. | 81, 98 |
| abstract_inverted_index.industry. | 15 |
| abstract_inverted_index.obviously | 172 |
| abstract_inverted_index.practical | 19 |
| abstract_inverted_index.processes | 11 |
| abstract_inverted_index.structure | 86 |
| abstract_inverted_index.technique | 7 |
| abstract_inverted_index.Meanwhile, | 32 |
| abstract_inverted_index.end-to-end | 141 |
| abstract_inverted_index.evaluation | 165 |
| abstract_inverted_index.processes, | 20 |
| abstract_inverted_index.production | 10 |
| abstract_inverted_index.self-built | 154 |
| abstract_inverted_index.trainable. | 142 |
| abstract_inverted_index.(SSA-ULNet) | 106 |
| abstract_inverted_index.convolution | 72, 85 |
| abstract_inverted_index.demonstrate | 167 |
| abstract_inverted_index.dynamically | 96 |
| abstract_inverted_index.graph-based | 115 |
| abstract_inverted_index.outperforms | 173 |
| abstract_inverted_index.recognition | 3, 123 |
| abstract_inverted_index.significant | 6 |
| abstract_inverted_index.constructed. | 119 |
| abstract_inverted_index.descriptors, | 134 |
| abstract_inverted_index.limitations, | 46 |
| abstract_inverted_index.recognition. | 63, 163 |
| abstract_inverted_index.convolutional | 56, 69 |
| abstract_inverted_index.semi-supervised | 54, 116 |
| abstract_inverted_index.state-of-the-art | 175 |
| abstract_inverted_index.spatial–spectral | 101 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.85648885 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |