A Spatiotemporal Convolutional Neural Network Model Based on Dual Attention Mechanism for Passenger Flow Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/math13142316
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, a neural network model based on the data-driven technology is established for the prediction of passenger flow in multiple urban rail transit stations to enable smart perception for optimizing urban railway transportation. The integration of network units with different specialities in the proposed model allows the network to capture passenger flow data, temporal correlation, spatial correlation, and spatiotemporal correlation with the dual attention mechanism, further improving the prediction accuracy. Experiments based on the actual passenger flow data of Beijing Metro Line 13 are conducted to compare the prediction performance of the proposed data-driven model with the other baseline models. The experimental results demonstrate that the proposed prediction model achieves lower MAE and RMSE in passenger flow prediction, and its fitted curve more closely aligns with the actual passenger flow data. This demonstrates the model’s practical potential to enhance intelligent transportation system management through more accurate passenger flow forecasting.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math13142316
- https://www.mdpi.com/2227-7390/13/14/2316/pdf?version=1753085124
- OA Status
- gold
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412515071
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412515071Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math13142316Digital Object Identifier
- Title
-
A Spatiotemporal Convolutional Neural Network Model Based on Dual Attention Mechanism for Passenger Flow PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-21Full publication date if available
- Authors
-
Jinlong Li, Haoran Chen, Qiuzi Lu, Xi Wang, Haifeng Song, Lunming QinList of authors in order
- Landing page
-
https://doi.org/10.3390/math13142316Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/13/14/2316/pdf?version=1753085124Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/13/14/2316/pdf?version=1753085124Direct OA link when available
- Concepts
-
Dual (grammatical number), Mechanism (biology), Convolutional neural network, Computer science, Flow (mathematics), Artificial intelligence, Mechanics, Physics, Art, Quantum mechanics, LiteratureTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412515071 |
|---|---|
| doi | https://doi.org/10.3390/math13142316 |
| ids.doi | https://doi.org/10.3390/math13142316 |
| ids.openalex | https://openalex.org/W4412515071 |
| fwci | 0.0 |
| type | article |
| title | A Spatiotemporal Convolutional Neural Network Model Based on Dual Attention Mechanism for Passenger Flow Prediction |
| awards[0].id | https://openalex.org/G5325422319 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 52472334 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G609296350 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | U2368204 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 14 |
| biblio.volume | 13 |
| biblio.last_page | 2316 |
| biblio.first_page | 2316 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T10698 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9957000017166138 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Transportation Planning and Optimization |
| topics[2].id | https://openalex.org/T10370 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9911999702453613 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Traffic and Road Safety |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C2780980858 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7386565208435059 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[0].display_name | Dual (grammatical number) |
| concepts[1].id | https://openalex.org/C89611455 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6890357136726379 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6804646 |
| concepts[1].display_name | Mechanism (biology) |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6728453636169434 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6366313695907593 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C38349280 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49067938327789307 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[4].display_name | Flow (mathematics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35339075326919556 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C57879066 |
| concepts[6].level | 1 |
| concepts[6].score | 0.06693068146705627 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[6].display_name | Mechanics |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.059922754764556885 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C142362112 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[8].display_name | Art |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C124952713 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[10].display_name | Literature |
| keywords[0].id | https://openalex.org/keywords/dual |
| keywords[0].score | 0.7386565208435059 |
| keywords[0].display_name | Dual (grammatical number) |
| keywords[1].id | https://openalex.org/keywords/mechanism |
| keywords[1].score | 0.6890357136726379 |
| keywords[1].display_name | Mechanism (biology) |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6728453636169434 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6366313695907593 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/flow |
| keywords[4].score | 0.49067938327789307 |
| keywords[4].display_name | Flow (mathematics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.35339075326919556 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/mechanics |
| keywords[6].score | 0.06693068146705627 |
| keywords[6].display_name | Mechanics |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.059922754764556885 |
| keywords[7].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/math13142316 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/13/14/2316/pdf?version=1753085124 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math13142316 |
| locations[1].id | pmh:oai:doaj.org/article:c043e5c8857149a2a99028485d870a40 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 13, Iss 14, p 2316 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/c043e5c8857149a2a99028485d870a40 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100454992 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2724-7807 |
| authorships[0].author.display_name | Jinlong Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210123817 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Urban Construction Design and Development Group Co., Ltd., Beijing 100034, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210123817 |
| authorships[0].institutions[0].ror | https://ror.org/03cw0ad25 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210123817 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Urban Construction Design & Development Group (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jinlong Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Urban Construction Design and Development Group Co., Ltd., Beijing 100034, China |
| authorships[1].author.id | https://openalex.org/A5100628696 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2407-8518 |
| authorships[1].author.display_name | Haoran Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Advanced Rail Autonomous Operation, School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China |
| authorships[1].institutions[0].id | https://openalex.org/I21193070 |
| authorships[1].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haoran Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Advanced Rail Autonomous Operation, School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China |
| authorships[2].author.id | https://openalex.org/A5102616658 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Qiuzi Lu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210123817 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Urban Construction Design and Development Group Co., Ltd., Beijing 100034, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210123817 |
| authorships[2].institutions[0].ror | https://ror.org/03cw0ad25 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210123817 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Urban Construction Design & Development Group (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiuzi Lu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Urban Construction Design and Development Group Co., Ltd., Beijing 100034, China |
| authorships[3].author.id | https://openalex.org/A5101507173 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4186-4935 |
| authorships[3].author.display_name | Xi Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Advanced Rail Autonomous Operation, School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China |
| authorships[3].institutions[0].id | https://openalex.org/I21193070 |
| authorships[3].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xi Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Advanced Rail Autonomous Operation, School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China |
| authorships[4].author.id | https://openalex.org/A5027642914 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6135-1619 |
| authorships[4].author.display_name | Haifeng Song |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electronic and Information Engineering, Beihang University, Beijing 100191, China |
| authorships[4].institutions[0].id | https://openalex.org/I82880672 |
| authorships[4].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beihang University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Haifeng Song |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electronic and Information Engineering, Beihang University, Beijing 100191, China |
| authorships[5].author.id | https://openalex.org/A5029571917 |
| authorships[5].author.orcid | https://orcid.org/0009-0007-6515-1861 |
| authorships[5].author.display_name | Lunming Qin |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I23632641 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| authorships[5].institutions[0].id | https://openalex.org/I23632641 |
| authorships[5].institutions[0].ror | https://ror.org/02w4tny03 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I23632641 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shanghai University of Electric Power |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Lunming Qin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/13/14/2316/pdf?version=1753085124 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Spatiotemporal Convolutional Neural Network Model Based on Dual Attention Mechanism for Passenger Flow Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W2382997850, https://openalex.org/W2390968135, https://openalex.org/W4391621807, https://openalex.org/W2382213751, https://openalex.org/W2351750670, https://openalex.org/W1597848696, https://openalex.org/W2354715126, https://openalex.org/W2388563748, https://openalex.org/W2375179084, https://openalex.org/W2366646518 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math13142316 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/13/14/2316/pdf?version=1753085124 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math13142316 |
| primary_location.id | doi:10.3390/math13142316 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/13/14/2316/pdf?version=1753085124 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math13142316 |
| publication_date | 2025-07-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3175686540, https://openalex.org/W4286359849, https://openalex.org/W2002841906, https://openalex.org/W1968745326, https://openalex.org/W3005220858, https://openalex.org/W3092539173, https://openalex.org/W4408913779, https://openalex.org/W2414364427, https://openalex.org/W4405809820, https://openalex.org/W2040162822, https://openalex.org/W4399168117, https://openalex.org/W2968868918, https://openalex.org/W2615673769, https://openalex.org/W2085987121, https://openalex.org/W2150010190, https://openalex.org/W1586335931, https://openalex.org/W1982538894, https://openalex.org/W2079662306, https://openalex.org/W2024558842, https://openalex.org/W2318143237, https://openalex.org/W2156206597, https://openalex.org/W2090192376, https://openalex.org/W2113405802, https://openalex.org/W2093323945, https://openalex.org/W2021153764, https://openalex.org/W2072750005, https://openalex.org/W1982613672, https://openalex.org/W2169519721, https://openalex.org/W2021229894, https://openalex.org/W2032717371, https://openalex.org/W2131767615, https://openalex.org/W2029050814, https://openalex.org/W1971757341, https://openalex.org/W3025986213, https://openalex.org/W3169661657, https://openalex.org/W2572939427, https://openalex.org/W6765790483, https://openalex.org/W3084394145, https://openalex.org/W3135788747, https://openalex.org/W2998652672, https://openalex.org/W3179429918, https://openalex.org/W2884585870, https://openalex.org/W3133765315, https://openalex.org/W3046002912, https://openalex.org/W2912985636, https://openalex.org/W2793820729, https://openalex.org/W4206419176, https://openalex.org/W2955819484 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 1, 8, 43 |
| abstract_inverted_index.13 | 124 |
| abstract_inverted_index.In | 40 |
| abstract_inverted_index.in | 35, 60, 83, 156 |
| abstract_inverted_index.is | 7, 52 |
| abstract_inverted_index.of | 16, 24, 57, 77, 120, 132 |
| abstract_inverted_index.on | 48, 114 |
| abstract_inverted_index.to | 66, 90, 127, 179 |
| abstract_inverted_index.MAE | 153 |
| abstract_inverted_index.The | 75, 142 |
| abstract_inverted_index.and | 10, 99, 154, 160 |
| abstract_inverted_index.are | 125 |
| abstract_inverted_index.for | 13, 54, 70 |
| abstract_inverted_index.has | 31 |
| abstract_inverted_index.its | 161 |
| abstract_inverted_index.the | 14, 22, 28, 36, 49, 55, 84, 88, 103, 109, 115, 129, 133, 138, 147, 168, 175 |
| abstract_inverted_index.Line | 123 |
| abstract_inverted_index.RMSE | 155 |
| abstract_inverted_index.This | 173 |
| abstract_inverted_index.With | 21 |
| abstract_inverted_index.been | 32 |
| abstract_inverted_index.data | 119 |
| abstract_inverted_index.dual | 104 |
| abstract_inverted_index.flow | 4, 59, 93, 118, 158, 171, 189 |
| abstract_inverted_index.more | 164, 186 |
| abstract_inverted_index.rail | 18, 63 |
| abstract_inverted_index.task | 12 |
| abstract_inverted_index.that | 146 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.with | 80, 102, 137, 167 |
| abstract_inverted_index.Metro | 122 |
| abstract_inverted_index.based | 47, 113 |
| abstract_inverted_index.curve | 163 |
| abstract_inverted_index.data, | 94 |
| abstract_inverted_index.data. | 172 |
| abstract_inverted_index.lower | 152 |
| abstract_inverted_index.model | 6, 46, 86, 136, 150 |
| abstract_inverted_index.other | 139 |
| abstract_inverted_index.smart | 68 |
| abstract_inverted_index.units | 79 |
| abstract_inverted_index.urban | 17, 62, 72 |
| abstract_inverted_index.actual | 116, 169 |
| abstract_inverted_index.aligns | 166 |
| abstract_inverted_index.allows | 87 |
| abstract_inverted_index.enable | 67 |
| abstract_inverted_index.fitted | 162 |
| abstract_inverted_index.neural | 44 |
| abstract_inverted_index.study, | 42 |
| abstract_inverted_index.system | 183 |
| abstract_inverted_index.widely | 33 |
| abstract_inverted_index.Beijing | 121 |
| abstract_inverted_index.capture | 91 |
| abstract_inverted_index.closely | 165 |
| abstract_inverted_index.compare | 128 |
| abstract_inverted_index.complex | 11 |
| abstract_inverted_index.enhance | 180 |
| abstract_inverted_index.further | 107 |
| abstract_inverted_index.models. | 141 |
| abstract_inverted_index.network | 45, 78, 89 |
| abstract_inverted_index.railway | 73 |
| abstract_inverted_index.results | 144 |
| abstract_inverted_index.spatial | 97 |
| abstract_inverted_index.studied | 34 |
| abstract_inverted_index.system. | 39 |
| abstract_inverted_index.through | 185 |
| abstract_inverted_index.transit | 19, 64 |
| abstract_inverted_index.accurate | 187 |
| abstract_inverted_index.achieves | 151 |
| abstract_inverted_index.baseline | 140 |
| abstract_inverted_index.critical | 9 |
| abstract_inverted_index.multiple | 61 |
| abstract_inverted_index.proposed | 85, 134, 148 |
| abstract_inverted_index.stations | 65 |
| abstract_inverted_index.systems. | 20 |
| abstract_inverted_index.temporal | 95 |
| abstract_inverted_index.accuracy. | 111 |
| abstract_inverted_index.attention | 105 |
| abstract_inverted_index.conducted | 126 |
| abstract_inverted_index.different | 81 |
| abstract_inverted_index.improving | 108 |
| abstract_inverted_index.model’s | 176 |
| abstract_inverted_index.passenger | 3, 58, 92, 117, 157, 170, 188 |
| abstract_inverted_index.potential | 178 |
| abstract_inverted_index.practical | 177 |
| abstract_inverted_index.artificial | 25 |
| abstract_inverted_index.management | 184 |
| abstract_inverted_index.mechanism, | 106 |
| abstract_inverted_index.optimizing | 71 |
| abstract_inverted_index.perception | 69 |
| abstract_inverted_index.prediction | 5, 56, 110, 130, 149 |
| abstract_inverted_index.technology | 30, 51 |
| abstract_inverted_index.Experiments | 112 |
| abstract_inverted_index.correlation | 101 |
| abstract_inverted_index.data-driven | 29, 50, 135 |
| abstract_inverted_index.demonstrate | 145 |
| abstract_inverted_index.development | 23 |
| abstract_inverted_index.established | 53 |
| abstract_inverted_index.integration | 76 |
| abstract_inverted_index.intelligent | 37, 181 |
| abstract_inverted_index.performance | 131 |
| abstract_inverted_index.prediction, | 159 |
| abstract_inverted_index.technology, | 27 |
| abstract_inverted_index.Establishing | 0 |
| abstract_inverted_index.correlation, | 96, 98 |
| abstract_inverted_index.demonstrates | 174 |
| abstract_inverted_index.experimental | 143 |
| abstract_inverted_index.forecasting. | 190 |
| abstract_inverted_index.intelligence | 26 |
| abstract_inverted_index.optimization | 15 |
| abstract_inverted_index.specialities | 82 |
| abstract_inverted_index.high-precision | 2 |
| abstract_inverted_index.spatiotemporal | 100 |
| abstract_inverted_index.transportation | 38, 182 |
| abstract_inverted_index.transportation. | 74 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.33562934 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |