A statistical model for estimating size and productivity ratio in SDLC Article Swipe
During a software development life cycle, one has to estimate the effort and schedule required to produce a software unit. Estimates for The effort and schedule are derived from other measurements such as size and productivity Ratio. Size may be estimated using methods such as Function Point, WBS, LOC, etc., and the Productivity Ratio is expressed as Size / Time to complete the Unit of Software. Such estimates are static and do not consider real-time Parameters which cause variations from the estimate. In this paper, a statistical model for Size and Productivity Ratios is derived using Historical values after considering several factors influencing the size and the productivity ratio of produced software. Typically, an estimate of the effort and schedule is required to complete. A software work product an enhancement request or a software fix. We use Function Points or WBS to estimate the size of the software in consideration. We use baseline values for estimating productivity Ratios. Real-time values however differ from Baseline values as they are influenced by several factors. Here are some factors which would influence the Actual Size of the software Later on we will use Statistical techniques of Multivariable Parameter estimation and logistic Regression to derive run time equations of Size and Productivity Ratio.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.46860/cgcijctr.2024.04.10.370
- https://doi.org/10.46860/cgcijctr.2024.04.10.370
- OA Status
- bronze
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394692155
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394692155Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.46860/cgcijctr.2024.04.10.370Digital Object Identifier
- Title
-
A statistical model for estimating size and productivity ratio in SDLCWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-10Full publication date if available
- Authors
-
Anuj GuptaList of authors in order
- Landing page
-
https://doi.org/10.46860/cgcijctr.2024.04.10.370Publisher landing page
- PDF URL
-
https://doi.org/10.46860/cgcijctr.2024.04.10.370Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.46860/cgcijctr.2024.04.10.370Direct OA link when available
- Concepts
-
Productivity, Econometrics, Computer science, Statistics, Mathematics, Economics, MacroeconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394692155 |
|---|---|
| doi | https://doi.org/10.46860/cgcijctr.2024.04.10.370 |
| ids.doi | https://doi.org/10.46860/cgcijctr.2024.04.10.370 |
| ids.openalex | https://openalex.org/W4394692155 |
| fwci | 0.0 |
| type | article |
| title | A statistical model for estimating size and productivity ratio in SDLC |
| biblio.issue | 1 |
| biblio.volume | 6 |
| biblio.last_page | 372 |
| biblio.first_page | 370 |
| topics[0].id | https://openalex.org/T14249 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.7786999940872192 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2311 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Water Quality Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C204983608 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5707865357398987 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2111958 |
| concepts[0].display_name | Productivity |
| concepts[1].id | https://openalex.org/C149782125 |
| concepts[1].level | 1 |
| concepts[1].score | 0.42846786975860596 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[1].display_name | Econometrics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4181128144264221 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3734396994113922 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.23666971921920776 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C162324750 |
| concepts[5].level | 0 |
| concepts[5].score | 0.1942933201789856 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[5].display_name | Economics |
| concepts[6].id | https://openalex.org/C139719470 |
| concepts[6].level | 1 |
| concepts[6].score | 0.07565224170684814 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[6].display_name | Macroeconomics |
| keywords[0].id | https://openalex.org/keywords/productivity |
| keywords[0].score | 0.5707865357398987 |
| keywords[0].display_name | Productivity |
| keywords[1].id | https://openalex.org/keywords/econometrics |
| keywords[1].score | 0.42846786975860596 |
| keywords[1].display_name | Econometrics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4181128144264221 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.3734396994113922 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.23666971921920776 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/economics |
| keywords[5].score | 0.1942933201789856 |
| keywords[5].display_name | Economics |
| keywords[6].id | https://openalex.org/keywords/macroeconomics |
| keywords[6].score | 0.07565224170684814 |
| keywords[6].display_name | Macroeconomics |
| language | en |
| locations[0].id | doi:10.46860/cgcijctr.2024.04.10.370 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210228484 |
| locations[0].source.issn | 2582-0486 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2582-0486 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | CGC International Journal of Contemporary Technology and Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.46860/cgcijctr.2024.04.10.370 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | CGC International Journal of Contemporary Technology and Research |
| locations[0].landing_page_url | https://doi.org/10.46860/cgcijctr.2024.04.10.370 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5029491972 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7636-0817 |
| authorships[0].author.display_name | Anuj Gupta |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Chandigarh Group of Colleges, Landran, Mohali, PB, India |
| authorships[0].institutions[0].id | https://openalex.org/I101407740 |
| authorships[0].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Chandigarh University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anuj Gupta |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Chandigarh Group of Colleges, Landran, Mohali, PB, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.46860/cgcijctr.2024.04.10.370 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A statistical model for estimating size and productivity ratio in SDLC |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14249 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.7786999940872192 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2311 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Water Quality Monitoring and Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.46860/cgcijctr.2024.04.10.370 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210228484 |
| best_oa_location.source.issn | 2582-0486 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2582-0486 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | CGC International Journal of Contemporary Technology and Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.46860/cgcijctr.2024.04.10.370 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | CGC International Journal of Contemporary Technology and Research |
| best_oa_location.landing_page_url | https://doi.org/10.46860/cgcijctr.2024.04.10.370 |
| primary_location.id | doi:10.46860/cgcijctr.2024.04.10.370 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210228484 |
| primary_location.source.issn | 2582-0486 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2582-0486 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | CGC International Journal of Contemporary Technology and Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.46860/cgcijctr.2024.04.10.370 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | CGC International Journal of Contemporary Technology and Research |
| primary_location.landing_page_url | https://doi.org/10.46860/cgcijctr.2024.04.10.370 |
| publication_date | 2024-04-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2754569179, https://openalex.org/W2772402907, https://openalex.org/W2885375080, https://openalex.org/W6755216047, https://openalex.org/W2760396879, https://openalex.org/W2921408567, https://openalex.org/W4295098747, https://openalex.org/W3184722940, https://openalex.org/W2892485681, https://openalex.org/W4253072831 |
| referenced_works_count | 10 |
| abstract_inverted_index./ | 58 |
| abstract_inverted_index.A | 124 |
| abstract_inverted_index.a | 1, 17, 85, 132 |
| abstract_inverted_index.In | 82 |
| abstract_inverted_index.We | 135, 150 |
| abstract_inverted_index.an | 113, 128 |
| abstract_inverted_index.as | 32, 44, 56, 165 |
| abstract_inverted_index.be | 39 |
| abstract_inverted_index.by | 169 |
| abstract_inverted_index.do | 71 |
| abstract_inverted_index.in | 148 |
| abstract_inverted_index.is | 54, 93, 120 |
| abstract_inverted_index.of | 64, 109, 115, 145, 182, 192, 204 |
| abstract_inverted_index.on | 186 |
| abstract_inverted_index.or | 131, 139 |
| abstract_inverted_index.to | 8, 15, 60, 122, 141, 199 |
| abstract_inverted_index.we | 187 |
| abstract_inverted_index.The | 22 |
| abstract_inverted_index.WBS | 140 |
| abstract_inverted_index.and | 12, 24, 34, 50, 70, 90, 105, 118, 196, 206 |
| abstract_inverted_index.are | 26, 68, 167, 173 |
| abstract_inverted_index.for | 21, 88, 154 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.may | 38 |
| abstract_inverted_index.not | 72 |
| abstract_inverted_index.one | 6 |
| abstract_inverted_index.run | 201 |
| abstract_inverted_index.the | 10, 51, 62, 80, 103, 106, 116, 143, 146, 179, 183 |
| abstract_inverted_index.use | 136, 151, 189 |
| abstract_inverted_index.Here | 172 |
| abstract_inverted_index.LOC, | 48 |
| abstract_inverted_index.Size | 37, 57, 89, 181, 205 |
| abstract_inverted_index.Such | 66 |
| abstract_inverted_index.Time | 59 |
| abstract_inverted_index.Unit | 63 |
| abstract_inverted_index.WBS, | 47 |
| abstract_inverted_index.fix. | 134 |
| abstract_inverted_index.from | 28, 79, 162 |
| abstract_inverted_index.life | 4 |
| abstract_inverted_index.size | 33, 104, 144 |
| abstract_inverted_index.some | 174 |
| abstract_inverted_index.such | 31, 43 |
| abstract_inverted_index.they | 166 |
| abstract_inverted_index.this | 83 |
| abstract_inverted_index.time | 202 |
| abstract_inverted_index.will | 188 |
| abstract_inverted_index.work | 126 |
| abstract_inverted_index.Later | 185 |
| abstract_inverted_index.Ratio | 53 |
| abstract_inverted_index.after | 98 |
| abstract_inverted_index.cause | 77 |
| abstract_inverted_index.etc., | 49 |
| abstract_inverted_index.model | 87 |
| abstract_inverted_index.other | 29 |
| abstract_inverted_index.ratio | 108 |
| abstract_inverted_index.unit. | 19 |
| abstract_inverted_index.using | 41, 95 |
| abstract_inverted_index.which | 76, 176 |
| abstract_inverted_index.would | 177 |
| abstract_inverted_index.Actual | 180 |
| abstract_inverted_index.During | 0 |
| abstract_inverted_index.Point, | 46 |
| abstract_inverted_index.Points | 138 |
| abstract_inverted_index.Ratio. | 36, 208 |
| abstract_inverted_index.Ratios | 92 |
| abstract_inverted_index.cycle, | 5 |
| abstract_inverted_index.derive | 200 |
| abstract_inverted_index.differ | 161 |
| abstract_inverted_index.effort | 11, 23, 117 |
| abstract_inverted_index.paper, | 84 |
| abstract_inverted_index.static | 69 |
| abstract_inverted_index.values | 97, 153, 159, 164 |
| abstract_inverted_index.Ratios. | 157 |
| abstract_inverted_index.derived | 27, 94 |
| abstract_inverted_index.factors | 101, 175 |
| abstract_inverted_index.however | 160 |
| abstract_inverted_index.methods | 42 |
| abstract_inverted_index.produce | 16 |
| abstract_inverted_index.product | 127 |
| abstract_inverted_index.request | 130 |
| abstract_inverted_index.several | 100, 170 |
| abstract_inverted_index.Baseline | 163 |
| abstract_inverted_index.Function | 45, 137 |
| abstract_inverted_index.baseline | 152 |
| abstract_inverted_index.complete | 61 |
| abstract_inverted_index.consider | 73 |
| abstract_inverted_index.estimate | 9, 114, 142 |
| abstract_inverted_index.factors. | 171 |
| abstract_inverted_index.logistic | 197 |
| abstract_inverted_index.produced | 110 |
| abstract_inverted_index.required | 14, 121 |
| abstract_inverted_index.schedule | 13, 25, 119 |
| abstract_inverted_index.software | 2, 18, 125, 133, 147, 184 |
| abstract_inverted_index.Estimates | 20 |
| abstract_inverted_index.Parameter | 194 |
| abstract_inverted_index.Real-time | 158 |
| abstract_inverted_index.Software. | 65 |
| abstract_inverted_index.complete. | 123 |
| abstract_inverted_index.equations | 203 |
| abstract_inverted_index.estimate. | 81 |
| abstract_inverted_index.estimated | 40 |
| abstract_inverted_index.estimates | 67 |
| abstract_inverted_index.expressed | 55 |
| abstract_inverted_index.influence | 178 |
| abstract_inverted_index.real-time | 74 |
| abstract_inverted_index.software. | 111 |
| abstract_inverted_index.Historical | 96 |
| abstract_inverted_index.Parameters | 75 |
| abstract_inverted_index.Regression | 198 |
| abstract_inverted_index.Typically, | 112 |
| abstract_inverted_index.estimating | 155 |
| abstract_inverted_index.estimation | 195 |
| abstract_inverted_index.influenced | 168 |
| abstract_inverted_index.techniques | 191 |
| abstract_inverted_index.variations | 78 |
| abstract_inverted_index.Statistical | 190 |
| abstract_inverted_index.considering | 99 |
| abstract_inverted_index.development | 3 |
| abstract_inverted_index.enhancement | 129 |
| abstract_inverted_index.influencing | 102 |
| abstract_inverted_index.statistical | 86 |
| abstract_inverted_index.Productivity | 52, 91, 207 |
| abstract_inverted_index.measurements | 30 |
| abstract_inverted_index.productivity | 35, 107, 156 |
| abstract_inverted_index.Multivariable | 193 |
| abstract_inverted_index.consideration. | 149 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5029491972 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I101407740 |
| citation_normalized_percentile.value | 0.06740762 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |