A streamlit-powered cloud platform for machine learning-driven early detection of cardiovascular diseases Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.36922/bh025340047
Cardiovascular diseases (CVDs) are a major contributor to global morbidity and mortality, highlighting the need for early detection and prevention. This study introduces CardioPredict AI, a cloud-based system using advanced machine learning (ML) for CVD prediction. It offers scalable, accessible, and real-time diagnosis. The system leverages a comprehensive patient dataset that integrates multiple clinical features, including age, cholesterol levels, and blood pressure. Data preprocessing involved imputation, normalization, one-hot encoding, and the selection of 12 key features. The random forest model achieved an accuracy of 90.21%, a recall of 94.75%, and an F1-score of 91.31%, meeting the medical standards for heart disease prediction (recall >90%; false negatives <20). Cross-validation yielded a recall of 0.8940 ± 0.0889. Key features include personalized recommendations, real-time risk assessment through a Streamlit application, SHapley Additive exPlanation-based interpretability, and a dashboard for patient metrics. This study highlights the potential of ML and cloud computing to reduce the burden of CVDs through early detection.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.36922/bh025340047
- OA Status
- hybrid
- OpenAlex ID
- https://openalex.org/W4416716492
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416716492Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36922/bh025340047Digital Object Identifier
- Title
-
A streamlit-powered cloud platform for machine learning-driven early detection of cardiovascular diseasesWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-25Full publication date if available
- Authors
-
Debotosh Bhattacharjee, Andries van DamList of authors in order
- Landing page
-
https://doi.org/10.36922/bh025340047Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.36922/bh025340047Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416716492 |
|---|---|
| doi | https://doi.org/10.36922/bh025340047 |
| ids.doi | https://doi.org/10.36922/bh025340047 |
| ids.openalex | https://openalex.org/W4416716492 |
| fwci | |
| type | article |
| title | A streamlit-powered cloud platform for machine learning-driven early detection of cardiovascular diseases |
| biblio.issue | 4 |
| biblio.volume | 3 |
| biblio.last_page | 025340047 |
| biblio.first_page | 025340047 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.36922/bh025340047 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407039956 |
| locations[0].source.issn | 2972-4139 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2972-4139 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Brain & Heart |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Brain & Heart |
| locations[0].landing_page_url | https://doi.org/10.36922/bh025340047 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5075849780 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1163-6413 |
| authorships[0].author.display_name | Debotosh Bhattacharjee |
| authorships[0].author_position | last |
| authorships[0].raw_author_name | Debangshu Bhattacharjee |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043007477 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-1342-3075 |
| authorships[1].author.display_name | Andries van Dam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anusree Dam |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.36922/bh025340047 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | A streamlit-powered cloud platform for machine learning-driven early detection of cardiovascular diseases |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T21:22:38.788670 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36922/bh025340047 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407039956 |
| best_oa_location.source.issn | 2972-4139 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2972-4139 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Brain & Heart |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Brain & Heart |
| best_oa_location.landing_page_url | https://doi.org/10.36922/bh025340047 |
| primary_location.id | doi:10.36922/bh025340047 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407039956 |
| primary_location.source.issn | 2972-4139 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2972-4139 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Brain & Heart |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Brain & Heart |
| primary_location.landing_page_url | https://doi.org/10.36922/bh025340047 |
| publication_date | 2025-11-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 25, 46, 85, 109, 124, 132 |
| abstract_inverted_index.12 | 73 |
| abstract_inverted_index.It | 36 |
| abstract_inverted_index.ML | 143 |
| abstract_inverted_index.an | 81, 90 |
| abstract_inverted_index.of | 72, 83, 87, 92, 111, 142, 151 |
| abstract_inverted_index.to | 7, 147 |
| abstract_inverted_index.AI, | 24 |
| abstract_inverted_index.CVD | 34 |
| abstract_inverted_index.Key | 115 |
| abstract_inverted_index.The | 43, 76 |
| abstract_inverted_index.and | 10, 18, 40, 59, 69, 89, 131, 144 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.for | 15, 33, 98, 134 |
| abstract_inverted_index.key | 74 |
| abstract_inverted_index.the | 13, 70, 95, 140, 149 |
| abstract_inverted_index.(ML) | 32 |
| abstract_inverted_index.CVDs | 152 |
| abstract_inverted_index.Data | 62 |
| abstract_inverted_index.This | 20, 137 |
| abstract_inverted_index.age, | 56 |
| abstract_inverted_index.need | 14 |
| abstract_inverted_index.risk | 121 |
| abstract_inverted_index.that | 50 |
| abstract_inverted_index.blood | 60 |
| abstract_inverted_index.cloud | 145 |
| abstract_inverted_index.early | 16, 154 |
| abstract_inverted_index.false | 104 |
| abstract_inverted_index.heart | 99 |
| abstract_inverted_index.major | 5 |
| abstract_inverted_index.model | 79 |
| abstract_inverted_index.study | 21, 138 |
| abstract_inverted_index.using | 28 |
| abstract_inverted_index.(CVDs) | 2 |
| abstract_inverted_index.0.8940 | 112 |
| abstract_inverted_index.burden | 150 |
| abstract_inverted_index.forest | 78 |
| abstract_inverted_index.global | 8 |
| abstract_inverted_index.offers | 37 |
| abstract_inverted_index.random | 77 |
| abstract_inverted_index.recall | 86, 110 |
| abstract_inverted_index.reduce | 148 |
| abstract_inverted_index.system | 27, 44 |
| abstract_inverted_index.(recall | 102 |
| abstract_inverted_index.0.0889. | 114 |
| abstract_inverted_index.90.21%, | 84 |
| abstract_inverted_index.91.31%, | 93 |
| abstract_inverted_index.94.75%, | 88 |
| abstract_inverted_index.SHapley | 127 |
| abstract_inverted_index.dataset | 49 |
| abstract_inverted_index.disease | 100 |
| abstract_inverted_index.include | 117 |
| abstract_inverted_index.levels, | 58 |
| abstract_inverted_index.machine | 30 |
| abstract_inverted_index.medical | 96 |
| abstract_inverted_index.meeting | 94 |
| abstract_inverted_index.one-hot | 67 |
| abstract_inverted_index.patient | 48, 135 |
| abstract_inverted_index.through | 123, 153 |
| abstract_inverted_index.yielded | 108 |
| abstract_inverted_index.>90%; | 103 |
| abstract_inverted_index.<20). | 106 |
| abstract_inverted_index.Additive | 128 |
| abstract_inverted_index.F1-score | 91 |
| abstract_inverted_index.accuracy | 82 |
| abstract_inverted_index.achieved | 80 |
| abstract_inverted_index.advanced | 29 |
| abstract_inverted_index.clinical | 53 |
| abstract_inverted_index.diseases | 1 |
| abstract_inverted_index.features | 116 |
| abstract_inverted_index.involved | 64 |
| abstract_inverted_index.learning | 31 |
| abstract_inverted_index.metrics. | 136 |
| abstract_inverted_index.multiple | 52 |
| abstract_inverted_index.Streamlit | 125 |
| abstract_inverted_index.computing | 146 |
| abstract_inverted_index.dashboard | 133 |
| abstract_inverted_index.detection | 17 |
| abstract_inverted_index.encoding, | 68 |
| abstract_inverted_index.features, | 54 |
| abstract_inverted_index.features. | 75 |
| abstract_inverted_index.including | 55 |
| abstract_inverted_index.leverages | 45 |
| abstract_inverted_index.morbidity | 9 |
| abstract_inverted_index.negatives | 105 |
| abstract_inverted_index.potential | 141 |
| abstract_inverted_index.pressure. | 61 |
| abstract_inverted_index.real-time | 41, 120 |
| abstract_inverted_index.scalable, | 38 |
| abstract_inverted_index.selection | 71 |
| abstract_inverted_index.standards | 97 |
| abstract_inverted_index.assessment | 122 |
| abstract_inverted_index.detection. | 155 |
| abstract_inverted_index.diagnosis. | 42 |
| abstract_inverted_index.highlights | 139 |
| abstract_inverted_index.integrates | 51 |
| abstract_inverted_index.introduces | 22 |
| abstract_inverted_index.mortality, | 11 |
| abstract_inverted_index.prediction | 101 |
| abstract_inverted_index.accessible, | 39 |
| abstract_inverted_index.cholesterol | 57 |
| abstract_inverted_index.cloud-based | 26 |
| abstract_inverted_index.contributor | 6 |
| abstract_inverted_index.imputation, | 65 |
| abstract_inverted_index.prediction. | 35 |
| abstract_inverted_index.prevention. | 19 |
| abstract_inverted_index.&plusmn; | 113 |
| abstract_inverted_index.application, | 126 |
| abstract_inverted_index.highlighting | 12 |
| abstract_inverted_index.personalized | 118 |
| abstract_inverted_index.CardioPredict | 23 |
| abstract_inverted_index.comprehensive | 47 |
| abstract_inverted_index.preprocessing | 63 |
| abstract_inverted_index.Cardiovascular | 0 |
| abstract_inverted_index.normalization, | 66 |
| abstract_inverted_index.Cross-validation | 107 |
| abstract_inverted_index.recommendations, | 119 |
| abstract_inverted_index.exPlanation-based | 129 |
| abstract_inverted_index.interpretability, | 130 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |