A Structured Reasoning Framework for Unbalanced Data Classification Using Probabilistic Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.03386
This paper studies a Markov network model for unbalanced data, aiming to solve the problems of classification bias and insufficient minority class recognition ability of traditional machine learning models in environments with uneven class distribution. By constructing joint probability distribution and conditional dependency, the model can achieve global modeling and reasoning optimization of sample categories. The study introduced marginal probability estimation and weighted loss optimization strategies, combined with regularization constraints and structured reasoning methods, effectively improving the generalization ability and robustness of the model. In the experimental stage, a real credit card fraud detection dataset was selected and compared with models such as logistic regression, support vector machine, random forest and XGBoost. The experimental results show that the Markov network performs well in indicators such as weighted accuracy, F1 score, and AUC-ROC, significantly outperforming traditional classification models, demonstrating its strong decision-making ability and applicability in unbalanced data scenarios. Future research can focus on efficient model training, structural optimization, and deep learning integration in large-scale unbalanced data environments and promote its wide application in practical applications such as financial risk control, medical diagnosis, and intelligent monitoring.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.03386
- https://arxiv.org/pdf/2502.03386
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407231761
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407231761Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.03386Digital Object Identifier
- Title
-
A Structured Reasoning Framework for Unbalanced Data Classification Using Probabilistic ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-05Full publication date if available
- Authors
-
Junliang Du, Sergio Suarez Dou, Bin Yang, Jinxia Hu, Tai AnList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.03386Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.03386Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.03386Direct OA link when available
- Concepts
-
Probabilistic logic, Computer science, Artificial intelligence, Machine learning, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407231761 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.03386 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.03386 |
| ids.openalex | https://openalex.org/W4407231761 |
| fwci | |
| type | preprint |
| title | A Structured Reasoning Framework for Unbalanced Data Classification Using Probabilistic Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11652 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9125000238418579 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Imbalanced Data Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C49937458 |
| concepts[0].level | 2 |
| concepts[0].score | 0.724424421787262 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[0].display_name | Probabilistic logic |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6354570984840393 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.49408796429634094 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.45268407464027405 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3570767343044281 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[0].score | 0.724424421787262 |
| keywords[0].display_name | Probabilistic logic |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6354570984840393 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.49408796429634094 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.45268407464027405 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.3570767343044281 |
| keywords[4].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.03386 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.03386 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.03386 |
| locations[1].id | doi:10.48550/arxiv.2502.03386 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.03386 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5010332378 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2794-2327 |
| authorships[0].author.display_name | Junliang Du |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Du, Junliang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5055282724 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7929-9468 |
| authorships[1].author.display_name | Sergio Suarez Dou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dou, Shiyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5025719998 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6127-3385 |
| authorships[2].author.display_name | Bin Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang, Bohuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5035725126 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-3559-1023 |
| authorships[3].author.display_name | Jinxia Hu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hu, Jiacheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5074138033 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tai An |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | An, Tai |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.03386 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Structured Reasoning Framework for Unbalanced Data Classification Using Probabilistic Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11652 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9125000238418579 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Imbalanced Data Classification Techniques |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.03386 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.03386 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.03386 |
| primary_location.id | pmh:oai:arXiv.org:2502.03386 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.03386 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.03386 |
| publication_date | 2025-02-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 88 |
| abstract_inverted_index.By | 35 |
| abstract_inverted_index.F1 | 128 |
| abstract_inverted_index.In | 84 |
| abstract_inverted_index.as | 102, 125, 176 |
| abstract_inverted_index.in | 29, 122, 144, 162, 172 |
| abstract_inverted_index.of | 15, 24, 52, 81 |
| abstract_inverted_index.on | 152 |
| abstract_inverted_index.to | 11 |
| abstract_inverted_index.The | 55, 112 |
| abstract_inverted_index.and | 18, 40, 49, 61, 70, 79, 97, 110, 130, 142, 158, 167, 182 |
| abstract_inverted_index.can | 45, 150 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.its | 138, 169 |
| abstract_inverted_index.the | 13, 43, 76, 82, 85, 117 |
| abstract_inverted_index.was | 95 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.bias | 17 |
| abstract_inverted_index.card | 91 |
| abstract_inverted_index.data | 146, 165 |
| abstract_inverted_index.deep | 159 |
| abstract_inverted_index.loss | 63 |
| abstract_inverted_index.real | 89 |
| abstract_inverted_index.risk | 178 |
| abstract_inverted_index.show | 115 |
| abstract_inverted_index.such | 101, 124, 175 |
| abstract_inverted_index.that | 116 |
| abstract_inverted_index.well | 121 |
| abstract_inverted_index.wide | 170 |
| abstract_inverted_index.with | 31, 67, 99 |
| abstract_inverted_index.class | 21, 33 |
| abstract_inverted_index.data, | 9 |
| abstract_inverted_index.focus | 151 |
| abstract_inverted_index.fraud | 92 |
| abstract_inverted_index.joint | 37 |
| abstract_inverted_index.model | 6, 44, 154 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.solve | 12 |
| abstract_inverted_index.study | 56 |
| abstract_inverted_index.Future | 148 |
| abstract_inverted_index.Markov | 4, 118 |
| abstract_inverted_index.aiming | 10 |
| abstract_inverted_index.credit | 90 |
| abstract_inverted_index.forest | 109 |
| abstract_inverted_index.global | 47 |
| abstract_inverted_index.model. | 83 |
| abstract_inverted_index.models | 28, 100 |
| abstract_inverted_index.random | 108 |
| abstract_inverted_index.sample | 53 |
| abstract_inverted_index.score, | 129 |
| abstract_inverted_index.stage, | 87 |
| abstract_inverted_index.strong | 139 |
| abstract_inverted_index.uneven | 32 |
| abstract_inverted_index.vector | 106 |
| abstract_inverted_index.ability | 23, 78, 141 |
| abstract_inverted_index.achieve | 46 |
| abstract_inverted_index.dataset | 94 |
| abstract_inverted_index.machine | 26 |
| abstract_inverted_index.medical | 180 |
| abstract_inverted_index.models, | 136 |
| abstract_inverted_index.network | 5, 119 |
| abstract_inverted_index.promote | 168 |
| abstract_inverted_index.results | 114 |
| abstract_inverted_index.studies | 2 |
| abstract_inverted_index.support | 105 |
| abstract_inverted_index.AUC-ROC, | 131 |
| abstract_inverted_index.XGBoost. | 111 |
| abstract_inverted_index.combined | 66 |
| abstract_inverted_index.compared | 98 |
| abstract_inverted_index.control, | 179 |
| abstract_inverted_index.learning | 27, 160 |
| abstract_inverted_index.logistic | 103 |
| abstract_inverted_index.machine, | 107 |
| abstract_inverted_index.marginal | 58 |
| abstract_inverted_index.methods, | 73 |
| abstract_inverted_index.minority | 20 |
| abstract_inverted_index.modeling | 48 |
| abstract_inverted_index.performs | 120 |
| abstract_inverted_index.problems | 14 |
| abstract_inverted_index.research | 149 |
| abstract_inverted_index.selected | 96 |
| abstract_inverted_index.weighted | 62, 126 |
| abstract_inverted_index.accuracy, | 127 |
| abstract_inverted_index.detection | 93 |
| abstract_inverted_index.efficient | 153 |
| abstract_inverted_index.financial | 177 |
| abstract_inverted_index.improving | 75 |
| abstract_inverted_index.practical | 173 |
| abstract_inverted_index.reasoning | 50, 72 |
| abstract_inverted_index.training, | 155 |
| abstract_inverted_index.diagnosis, | 181 |
| abstract_inverted_index.estimation | 60 |
| abstract_inverted_index.indicators | 123 |
| abstract_inverted_index.introduced | 57 |
| abstract_inverted_index.robustness | 80 |
| abstract_inverted_index.scenarios. | 147 |
| abstract_inverted_index.structural | 156 |
| abstract_inverted_index.structured | 71 |
| abstract_inverted_index.unbalanced | 8, 145, 164 |
| abstract_inverted_index.application | 171 |
| abstract_inverted_index.categories. | 54 |
| abstract_inverted_index.conditional | 41 |
| abstract_inverted_index.constraints | 69 |
| abstract_inverted_index.dependency, | 42 |
| abstract_inverted_index.effectively | 74 |
| abstract_inverted_index.integration | 161 |
| abstract_inverted_index.intelligent | 183 |
| abstract_inverted_index.large-scale | 163 |
| abstract_inverted_index.monitoring. | 184 |
| abstract_inverted_index.probability | 38, 59 |
| abstract_inverted_index.recognition | 22 |
| abstract_inverted_index.regression, | 104 |
| abstract_inverted_index.strategies, | 65 |
| abstract_inverted_index.traditional | 25, 134 |
| abstract_inverted_index.applications | 174 |
| abstract_inverted_index.constructing | 36 |
| abstract_inverted_index.distribution | 39 |
| abstract_inverted_index.environments | 30, 166 |
| abstract_inverted_index.experimental | 86, 113 |
| abstract_inverted_index.insufficient | 19 |
| abstract_inverted_index.optimization | 51, 64 |
| abstract_inverted_index.applicability | 143 |
| abstract_inverted_index.demonstrating | 137 |
| abstract_inverted_index.distribution. | 34 |
| abstract_inverted_index.optimization, | 157 |
| abstract_inverted_index.outperforming | 133 |
| abstract_inverted_index.significantly | 132 |
| abstract_inverted_index.classification | 16, 135 |
| abstract_inverted_index.generalization | 77 |
| abstract_inverted_index.regularization | 68 |
| abstract_inverted_index.decision-making | 140 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |