A Study of Particle Motion and Separation Characteristics in a Vibrating Airflow Composite Force Field Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/pr13113501
· OA: W4415815074
Low-quality fine-grained coal cannot be effectively separated in a conventional gas–solid fluidized bed. To enhance the density stratification and separation of low-quality fine-grained coal, this paper introduces a vibration force field to create a vibrating airflow composite force field. By investigating the force characteristics and sorting behavior of particles within this vibrating airflow composite force field, we reveal the mechanical properties of both high-density and low-density particles. An energy dissipation model for the vibrational energy among particles in the bed is established, clarifying how vibration acceleration varies between the front and rear sections of the bed. The experimental results indicate that acceleration at the feeding end is significantly greater than that at the discharging end. This higher acceleration at the feeding end facilitates the stratification and segregation of selected particles, while acceleration at the discharging end provides the necessary energy for the transport of gangue. The acceleration curve for low-density particles exhibits greater fluctuations compared to that for high-density particles; additionally, the forces acting on these particles along the y-axis direction promote density segregation. The forces tend to decrease gradually along the z-axis direction, which aids in particle migration and movement. The particle-sorting effectiveness within this vibrating airflow composite force field initially increases with rising vibration frequencies and gas velocities before subsequently decreasing. Under a frequency of 30 Hz and a gas velocity of 35 cm/s, the ash content and yield of the clean coal product from the bed are 7.1% and 52.6%, respectively, achieving the maximum degree of ash separation.