A study of Primary health care service efficiency and its spatial correlation in China Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-2104764/v1
Background China's primary health care system has undergone major changes since the new round of medical reform in 2009, but the current status of primary health care institution service efficiency is still unsatisfactory. The purpose of this study is to compare and evaluate the China’s primary health care institution service efficiency and provide a reference for improving the efficiency and promoting the development of primary health care institution. Methods Based on panel data of 31 provinces (municipalities directly under the central government and autonomous regions) in mainland China from 2011 to 2020, using the super efficiency slack-based measure-data envelopment analysis model, to analyze the data from a static perspective, and the changes in the efficiency of primary health care services were analyzed from a dynamic perspective by using the Malmquist index method. Spatial autocorrelation analysis method was used to verify the spatial correlation of Primary health care service efficiency among various regions. Results The number of Primary health care institutions increased from 918,000 in 2011 to 970,000 in 2020. The average primary health care institution service efficiency in the northeastern region including Jilin (0.324), Heilongjiang (0.460), Liaoning (0.453) and northern regions such as Shaanxi (0.344) and Neimenggu (0.403) was at a low level, while the eastern coastal regions such as Guangdong (1.116), Zhejiang (1.211), Shanghai (1.402) have higher average service efficiency levels. The global Moran's I showed the existence of spatial autocorrelation, and the local Moran's I index suggested that the problem of uneven regional development was prominent, showing a contiguous regional distribution pattern. Among them, H-H (high-efficiency regions) were mainly concentrated in Jiangsu, Anhui and Shanghai, and L-L regions were mostly in northern and northeastern China. Conclusion The service efficiency of primary health care institution in China showed a rising trend in general, but the overall average efficiency was still at a low level, and there were significant geographical differences, which showed a spatial distribution of "high in the east and low in the west, high in the south and low in the north". The northwestern region, after receiving relevant support, has seen a rapid development of primary health care, and its efficiency was steadily improving and gradually reaching a high level. The average primary health care institution service efficiency in the northeastern region including the northern region of China was at a low level, while the average efficiency in the eastern coastal region and some economically developed regions was high, which also verifies the dependence and high symbiosis of primary health care institution service efficiency on regional economy.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-2104764/v1
- https://www.researchsquare.com/article/rs-2104764/latest.pdf
- OA Status
- green
- Cited By
- 1
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311646525
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311646525Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-2104764/v1Digital Object Identifier
- Title
-
A study of Primary health care service efficiency and its spatial correlation in ChinaWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-06Full publication date if available
- Authors
-
Kangni Mei, Ruxin Kou, Yuqing Bi, Yuzhuo Liu, Jingwen Huang, Wei LiList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-2104764/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-2104764/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-2104764/latest.pdfDirect OA link when available
- Concepts
-
Index (typography), Mainland China, Service (business), China, Data envelopment analysis, Health care, Business, Spatial analysis, Geography, Environmental health, Socioeconomics, Economic growth, Medicine, Statistics, Economics, Marketing, Computer science, Mathematics, World Wide Web, Remote sensing, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311646525 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-2104764/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-2104764/v1 |
| ids.openalex | https://openalex.org/W4311646525 |
| fwci | 0.27562249 |
| type | preprint |
| title | A study of Primary health care service efficiency and its spatial correlation in China |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11531 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9966999888420105 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2003 |
| topics[0].subfield.display_name | Finance |
| topics[0].display_name | Healthcare Systems and Reforms |
| topics[1].id | https://openalex.org/T11911 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9934999942779541 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Spatial and Panel Data Analysis |
| topics[2].id | https://openalex.org/T12781 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9932000041007996 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Global Health Care Issues |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777382242 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6069146394729614 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6017816 |
| concepts[0].display_name | Index (typography) |
| concepts[1].id | https://openalex.org/C107029721 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5313661098480225 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q19188 |
| concepts[1].display_name | Mainland China |
| concepts[2].id | https://openalex.org/C2780378061 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5062626600265503 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[2].display_name | Service (business) |
| concepts[3].id | https://openalex.org/C191935318 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5048604607582092 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[3].display_name | China |
| concepts[4].id | https://openalex.org/C22088475 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46857333183288574 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q647974 |
| concepts[4].display_name | Data envelopment analysis |
| concepts[5].id | https://openalex.org/C160735492 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46817487478256226 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[5].display_name | Health care |
| concepts[6].id | https://openalex.org/C144133560 |
| concepts[6].level | 0 |
| concepts[6].score | 0.45589566230773926 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[6].display_name | Business |
| concepts[7].id | https://openalex.org/C159620131 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4515095353126526 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[7].display_name | Spatial analysis |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4222119450569153 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C99454951 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3431764245033264 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[9].display_name | Environmental health |
| concepts[10].id | https://openalex.org/C45355965 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3379981815814972 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1643441 |
| concepts[10].display_name | Socioeconomics |
| concepts[11].id | https://openalex.org/C50522688 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3278467059135437 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[11].display_name | Economic growth |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.30572709441185 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2115095555782318 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.18914827704429626 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C162853370 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11672458052635193 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[15].display_name | Marketing |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.10544911026954651 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C136764020 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[18].display_name | World Wide Web |
| concepts[19].id | https://openalex.org/C62649853 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[19].display_name | Remote sensing |
| concepts[20].id | https://openalex.org/C166957645 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[20].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/index |
| keywords[0].score | 0.6069146394729614 |
| keywords[0].display_name | Index (typography) |
| keywords[1].id | https://openalex.org/keywords/mainland-china |
| keywords[1].score | 0.5313661098480225 |
| keywords[1].display_name | Mainland China |
| keywords[2].id | https://openalex.org/keywords/service |
| keywords[2].score | 0.5062626600265503 |
| keywords[2].display_name | Service (business) |
| keywords[3].id | https://openalex.org/keywords/china |
| keywords[3].score | 0.5048604607582092 |
| keywords[3].display_name | China |
| keywords[4].id | https://openalex.org/keywords/data-envelopment-analysis |
| keywords[4].score | 0.46857333183288574 |
| keywords[4].display_name | Data envelopment analysis |
| keywords[5].id | https://openalex.org/keywords/health-care |
| keywords[5].score | 0.46817487478256226 |
| keywords[5].display_name | Health care |
| keywords[6].id | https://openalex.org/keywords/business |
| keywords[6].score | 0.45589566230773926 |
| keywords[6].display_name | Business |
| keywords[7].id | https://openalex.org/keywords/spatial-analysis |
| keywords[7].score | 0.4515095353126526 |
| keywords[7].display_name | Spatial analysis |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.4222119450569153 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/environmental-health |
| keywords[9].score | 0.3431764245033264 |
| keywords[9].display_name | Environmental health |
| keywords[10].id | https://openalex.org/keywords/socioeconomics |
| keywords[10].score | 0.3379981815814972 |
| keywords[10].display_name | Socioeconomics |
| keywords[11].id | https://openalex.org/keywords/economic-growth |
| keywords[11].score | 0.3278467059135437 |
| keywords[11].display_name | Economic growth |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.30572709441185 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.2115095555782318 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/economics |
| keywords[14].score | 0.18914827704429626 |
| keywords[14].display_name | Economics |
| keywords[15].id | https://openalex.org/keywords/marketing |
| keywords[15].score | 0.11672458052635193 |
| keywords[15].display_name | Marketing |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.10544911026954651 |
| keywords[16].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-2104764/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-2104764/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-2104764/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5055049699 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kangni Mei |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I117331123 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Public Health, Weifang Medical University Yuqing Bi |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I117331123 |
| authorships[0].affiliations[1].raw_affiliation_string | Yuzhuo Liu School of Management, Weifang Medical University |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I117331123 |
| authorships[0].affiliations[2].raw_affiliation_string | School of Public Health, Weifang Medical University |
| authorships[0].institutions[0].id | https://openalex.org/I117331123 |
| authorships[0].institutions[0].ror | https://ror.org/03tmp6662 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I117331123 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Weifang Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | kangni Mei |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Public Health, Weifang Medical University, School of Public Health, Weifang Medical University Yuqing Bi, Yuzhuo Liu School of Management, Weifang Medical University |
| authorships[1].author.id | https://openalex.org/A5065227725 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3600-1147 |
| authorships[1].author.display_name | Ruxin Kou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I117331123 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Public Health, Weifang Medical University Yuqing Bi |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I117331123 |
| authorships[1].affiliations[1].raw_affiliation_string | Yuzhuo Liu School of Management, Weifang Medical University |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I117331123 |
| authorships[1].affiliations[2].raw_affiliation_string | School of Public Health, Weifang Medical University |
| authorships[1].institutions[0].id | https://openalex.org/I117331123 |
| authorships[1].institutions[0].ror | https://ror.org/03tmp6662 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I117331123 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Weifang Medical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruxin Kou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Public Health, Weifang Medical University, School of Public Health, Weifang Medical University Yuqing Bi, Yuzhuo Liu School of Management, Weifang Medical University |
| authorships[2].author.id | https://openalex.org/A5024405874 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yuqing Bi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I117331123 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Public Health, Weifang Medical University |
| authorships[2].institutions[0].id | https://openalex.org/I117331123 |
| authorships[2].institutions[0].ror | https://ror.org/03tmp6662 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I117331123 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Weifang Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuqing Bi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Public Health, Weifang Medical University |
| authorships[3].author.id | https://openalex.org/A5078227807 |
| authorships[3].author.orcid | https://orcid.org/0009-0004-3768-030X |
| authorships[3].author.display_name | Yuzhuo Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I117331123 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Management, Weifang Medical University |
| authorships[3].institutions[0].id | https://openalex.org/I117331123 |
| authorships[3].institutions[0].ror | https://ror.org/03tmp6662 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I117331123 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Weifang Medical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yuzhuo Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Management, Weifang Medical University |
| authorships[4].author.id | https://openalex.org/A5088380523 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jingwen Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I117331123 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Public Health, Weifang Medical University Yuqing Bi |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I117331123 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Public Health, Weifang Medical University |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I117331123 |
| authorships[4].affiliations[2].raw_affiliation_string | Yuzhuo Liu School of Management, Weifang Medical University |
| authorships[4].institutions[0].id | https://openalex.org/I117331123 |
| authorships[4].institutions[0].ror | https://ror.org/03tmp6662 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I117331123 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Weifang Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jingwen Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Public Health, Weifang Medical University, School of Public Health, Weifang Medical University Yuqing Bi, Yuzhuo Liu School of Management, Weifang Medical University |
| authorships[5].author.id | https://openalex.org/A5100318406 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2345-4788 |
| authorships[5].author.display_name | Wei Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I117331123 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Public Health, Weifang Medical University Yuqing Bi |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I117331123 |
| authorships[5].affiliations[1].raw_affiliation_string | Yuzhuo Liu School of Management, Weifang Medical University |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I117331123 |
| authorships[5].affiliations[2].raw_affiliation_string | School of Public Health, Weifang Medical University |
| authorships[5].institutions[0].id | https://openalex.org/I117331123 |
| authorships[5].institutions[0].ror | https://ror.org/03tmp6662 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I117331123 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Weifang Medical University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wei Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Public Health, Weifang Medical University, School of Public Health, Weifang Medical University Yuqing Bi, Yuzhuo Liu School of Management, Weifang Medical University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-2104764/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A study of Primary health care service efficiency and its spatial correlation in China |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11531 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9966999888420105 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2003 |
| primary_topic.subfield.display_name | Finance |
| primary_topic.display_name | Healthcare Systems and Reforms |
| related_works | https://openalex.org/W2801360836, https://openalex.org/W4378625608, https://openalex.org/W2120745168, https://openalex.org/W2736559621, https://openalex.org/W2352291457, https://openalex.org/W2360317231, https://openalex.org/W2126538897, https://openalex.org/W4300811387, https://openalex.org/W2277194173, https://openalex.org/W2393998096 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-2104764/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-2104764/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2104764/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-2104764/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-2104764/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2104764/v1 |
| publication_date | 2022-12-06 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2338695869, https://openalex.org/W3197103902, https://openalex.org/W2014042461, https://openalex.org/W2086016360, https://openalex.org/W2057122498, https://openalex.org/W1579925753, https://openalex.org/W1581029233, https://openalex.org/W2293628229, https://openalex.org/W3040880973, https://openalex.org/W2790346445, https://openalex.org/W2367862689, https://openalex.org/W2001738721, https://openalex.org/W2945733235, https://openalex.org/W2793344761, https://openalex.org/W2972237962, https://openalex.org/W3136024722, https://openalex.org/W3033344002, https://openalex.org/W2889905735, https://openalex.org/W4248841288, https://openalex.org/W2750972273, https://openalex.org/W4249642514, https://openalex.org/W1984205978, https://openalex.org/W3045744179, https://openalex.org/W2162787520, https://openalex.org/W2056497076, https://openalex.org/W2118898434, https://openalex.org/W2990495294, https://openalex.org/W3037727115, https://openalex.org/W2801332385, https://openalex.org/W2096149244, https://openalex.org/W2923875968, https://openalex.org/W6746773088, https://openalex.org/W2976258142, https://openalex.org/W2362069581, https://openalex.org/W2773266137, https://openalex.org/W2230956750, https://openalex.org/W4234681626, https://openalex.org/W4235556469 |
| referenced_works_count | 38 |
| abstract_inverted_index.I | 226, 237 |
| abstract_inverted_index.a | 54, 107, 124, 201, 250, 290, 303, 314, 345, 361, 384 |
| abstract_inverted_index.31 | 75 |
| abstract_inverted_index.as | 193, 210 |
| abstract_inverted_index.at | 200, 302, 383 |
| abstract_inverted_index.by | 127 |
| abstract_inverted_index.in | 18, 86, 113, 164, 168, 178, 263, 273, 287, 293, 319, 324, 328, 333, 372, 391 |
| abstract_inverted_index.is | 31, 39 |
| abstract_inverted_index.of | 15, 24, 36, 64, 74, 116, 144, 156, 230, 243, 282, 317, 348, 380, 411 |
| abstract_inverted_index.on | 71, 418 |
| abstract_inverted_index.to | 40, 91, 102, 139, 166 |
| abstract_inverted_index.H-H | 257 |
| abstract_inverted_index.L-L | 269 |
| abstract_inverted_index.The | 34, 154, 170, 223, 279, 336, 364 |
| abstract_inverted_index.and | 42, 52, 60, 83, 110, 189, 196, 233, 266, 268, 275, 306, 322, 331, 352, 358, 396, 408 |
| abstract_inverted_index.but | 20, 295 |
| abstract_inverted_index.for | 56 |
| abstract_inverted_index.has | 7, 343 |
| abstract_inverted_index.its | 353 |
| abstract_inverted_index.low | 202, 304, 323, 332, 385 |
| abstract_inverted_index.new | 13 |
| abstract_inverted_index.the | 12, 21, 44, 58, 62, 80, 94, 104, 111, 114, 129, 141, 179, 205, 228, 234, 241, 296, 320, 325, 329, 334, 373, 377, 388, 392, 406 |
| abstract_inverted_index.was | 137, 199, 247, 300, 355, 382, 401 |
| abstract_inverted_index.2011 | 90, 165 |
| abstract_inverted_index.also | 404 |
| abstract_inverted_index.care | 5, 27, 48, 67, 119, 147, 159, 174, 285, 368, 414 |
| abstract_inverted_index.data | 73, 105 |
| abstract_inverted_index.east | 321 |
| abstract_inverted_index.from | 89, 106, 123, 162 |
| abstract_inverted_index.have | 217 |
| abstract_inverted_index.high | 327, 362, 409 |
| abstract_inverted_index.seen | 344 |
| abstract_inverted_index.some | 397 |
| abstract_inverted_index.such | 192, 209 |
| abstract_inverted_index.that | 240 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.used | 138 |
| abstract_inverted_index.were | 121, 260, 271, 308 |
| abstract_inverted_index."high | 318 |
| abstract_inverted_index.2009, | 19 |
| abstract_inverted_index.2020, | 92 |
| abstract_inverted_index.2020. | 169 |
| abstract_inverted_index.Among | 255 |
| abstract_inverted_index.Anhui | 265 |
| abstract_inverted_index.Based | 70 |
| abstract_inverted_index.China | 88, 288, 381 |
| abstract_inverted_index.Jilin | 183 |
| abstract_inverted_index.after | 339 |
| abstract_inverted_index.among | 150 |
| abstract_inverted_index.care, | 351 |
| abstract_inverted_index.high, | 402 |
| abstract_inverted_index.index | 131, 238 |
| abstract_inverted_index.local | 235 |
| abstract_inverted_index.major | 9 |
| abstract_inverted_index.panel | 72 |
| abstract_inverted_index.rapid | 346 |
| abstract_inverted_index.round | 14 |
| abstract_inverted_index.since | 11 |
| abstract_inverted_index.south | 330 |
| abstract_inverted_index.still | 32, 301 |
| abstract_inverted_index.study | 38 |
| abstract_inverted_index.super | 95 |
| abstract_inverted_index.them, | 256 |
| abstract_inverted_index.there | 307 |
| abstract_inverted_index.trend | 292 |
| abstract_inverted_index.under | 79 |
| abstract_inverted_index.using | 93, 128 |
| abstract_inverted_index.west, | 326 |
| abstract_inverted_index.which | 312, 403 |
| abstract_inverted_index.while | 204, 387 |
| abstract_inverted_index.China. | 277 |
| abstract_inverted_index.global | 224 |
| abstract_inverted_index.health | 4, 26, 47, 66, 118, 146, 158, 173, 284, 350, 367, 413 |
| abstract_inverted_index.higher | 218 |
| abstract_inverted_index.level, | 203, 305, 386 |
| abstract_inverted_index.level. | 363 |
| abstract_inverted_index.mainly | 261 |
| abstract_inverted_index.method | 136 |
| abstract_inverted_index.model, | 101 |
| abstract_inverted_index.mostly | 272 |
| abstract_inverted_index.number | 155 |
| abstract_inverted_index.reform | 17 |
| abstract_inverted_index.region | 181, 375, 379, 395 |
| abstract_inverted_index.rising | 291 |
| abstract_inverted_index.showed | 227, 289, 313 |
| abstract_inverted_index.static | 108 |
| abstract_inverted_index.status | 23 |
| abstract_inverted_index.system | 6 |
| abstract_inverted_index.uneven | 244 |
| abstract_inverted_index.verify | 140 |
| abstract_inverted_index.(0.344) | 195 |
| abstract_inverted_index.(0.403) | 198 |
| abstract_inverted_index.(0.453) | 188 |
| abstract_inverted_index.(1.402) | 216 |
| abstract_inverted_index.918,000 | 163 |
| abstract_inverted_index.970,000 | 167 |
| abstract_inverted_index.China's | 2 |
| abstract_inverted_index.Methods | 69 |
| abstract_inverted_index.Moran's | 225, 236 |
| abstract_inverted_index.Primary | 145, 157 |
| abstract_inverted_index.Results | 153 |
| abstract_inverted_index.Shaanxi | 194 |
| abstract_inverted_index.Spatial | 133 |
| abstract_inverted_index.analyze | 103 |
| abstract_inverted_index.average | 171, 219, 298, 365, 389 |
| abstract_inverted_index.central | 81 |
| abstract_inverted_index.changes | 10, 112 |
| abstract_inverted_index.coastal | 207, 394 |
| abstract_inverted_index.compare | 41 |
| abstract_inverted_index.current | 22 |
| abstract_inverted_index.dynamic | 125 |
| abstract_inverted_index.eastern | 206, 393 |
| abstract_inverted_index.levels. | 222 |
| abstract_inverted_index.medical | 16 |
| abstract_inverted_index.method. | 132 |
| abstract_inverted_index.north". | 335 |
| abstract_inverted_index.overall | 297 |
| abstract_inverted_index.primary | 3, 25, 46, 65, 117, 172, 283, 349, 366, 412 |
| abstract_inverted_index.problem | 242 |
| abstract_inverted_index.provide | 53 |
| abstract_inverted_index.purpose | 35 |
| abstract_inverted_index.region, | 338 |
| abstract_inverted_index.regions | 191, 208, 270, 400 |
| abstract_inverted_index.service | 29, 50, 148, 176, 220, 280, 370, 416 |
| abstract_inverted_index.showing | 249 |
| abstract_inverted_index.spatial | 142, 231, 315 |
| abstract_inverted_index.various | 151 |
| abstract_inverted_index.(0.324), | 184 |
| abstract_inverted_index.(0.460), | 186 |
| abstract_inverted_index.(1.116), | 212 |
| abstract_inverted_index.(1.211), | 214 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Jiangsu, | 264 |
| abstract_inverted_index.Liaoning | 187 |
| abstract_inverted_index.Shanghai | 215 |
| abstract_inverted_index.Zhejiang | 213 |
| abstract_inverted_index.analysis | 100, 135 |
| abstract_inverted_index.analyzed | 122 |
| abstract_inverted_index.directly | 78 |
| abstract_inverted_index.economy. | 420 |
| abstract_inverted_index.evaluate | 43 |
| abstract_inverted_index.general, | 294 |
| abstract_inverted_index.mainland | 87 |
| abstract_inverted_index.northern | 190, 274, 378 |
| abstract_inverted_index.pattern. | 254 |
| abstract_inverted_index.reaching | 360 |
| abstract_inverted_index.regional | 245, 252, 419 |
| abstract_inverted_index.regions) | 85, 259 |
| abstract_inverted_index.regions. | 152 |
| abstract_inverted_index.relevant | 341 |
| abstract_inverted_index.services | 120 |
| abstract_inverted_index.steadily | 356 |
| abstract_inverted_index.support, | 342 |
| abstract_inverted_index.verifies | 405 |
| abstract_inverted_index.China’s | 45 |
| abstract_inverted_index.Guangdong | 211 |
| abstract_inverted_index.Malmquist | 130 |
| abstract_inverted_index.Neimenggu | 197 |
| abstract_inverted_index.Shanghai, | 267 |
| abstract_inverted_index.developed | 399 |
| abstract_inverted_index.existence | 229 |
| abstract_inverted_index.gradually | 359 |
| abstract_inverted_index.improving | 57, 357 |
| abstract_inverted_index.including | 182, 376 |
| abstract_inverted_index.increased | 161 |
| abstract_inverted_index.promoting | 61 |
| abstract_inverted_index.provinces | 76 |
| abstract_inverted_index.receiving | 340 |
| abstract_inverted_index.reference | 55 |
| abstract_inverted_index.suggested | 239 |
| abstract_inverted_index.symbiosis | 410 |
| abstract_inverted_index.undergone | 8 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 278 |
| abstract_inverted_index.autonomous | 84 |
| abstract_inverted_index.contiguous | 251 |
| abstract_inverted_index.dependence | 407 |
| abstract_inverted_index.efficiency | 30, 51, 59, 96, 115, 149, 177, 221, 281, 299, 354, 371, 390, 417 |
| abstract_inverted_index.government | 82 |
| abstract_inverted_index.prominent, | 248 |
| abstract_inverted_index.correlation | 143 |
| abstract_inverted_index.development | 63, 246, 347 |
| abstract_inverted_index.envelopment | 99 |
| abstract_inverted_index.institution | 28, 49, 175, 286, 369, 415 |
| abstract_inverted_index.perspective | 126 |
| abstract_inverted_index.significant | 309 |
| abstract_inverted_index.slack-based | 97 |
| abstract_inverted_index.Heilongjiang | 185 |
| abstract_inverted_index.concentrated | 262 |
| abstract_inverted_index.differences, | 311 |
| abstract_inverted_index.distribution | 253, 316 |
| abstract_inverted_index.economically | 398 |
| abstract_inverted_index.geographical | 310 |
| abstract_inverted_index.institution. | 68 |
| abstract_inverted_index.institutions | 160 |
| abstract_inverted_index.measure-data | 98 |
| abstract_inverted_index.northeastern | 180, 276, 374 |
| abstract_inverted_index.northwestern | 337 |
| abstract_inverted_index.perspective, | 109 |
| abstract_inverted_index.(municipalities | 77 |
| abstract_inverted_index.autocorrelation | 134 |
| abstract_inverted_index.unsatisfactory. | 33 |
| abstract_inverted_index.(high-efficiency | 258 |
| abstract_inverted_index.autocorrelation, | 232 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.57469589 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |