A Study on Regression Based Machine Learning Models to Predict the Student Performance Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.16920/jeet/2024/v38i2/24200
This article discusses the use of three regression models (Linear Regression, Decision Tree Regression, and Random Forest Regression) to study the performance of high school students in India across three subjects: Physics, Chemistry, and Mathematics. The study identifies various factors that affect student performance, such as access to good internet connectivity, parental educational background, and lunch quality. The data was obtained from an educational firm and analyzed based on principles and methods that aid decision-making processes. The results showed that all three regression models produced accurate and plausible results, with an overall accuracy of approximately 95%. The study's primary objective was to provide a clear and concise comparative analysis of various Machine Learning techniques and their impact on the dataset and the predictive attributes analyzed. The findings from this study underscore the importance of considering various factors when analyzing student performance and highlight the effectiveness of Machine Learning techniques in this domain. Keywords: Online Courses, Learning Analytics Dataset, Machine Learning, Tutor Marked Assessment, Receiver Operating Characteristic (ROC).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.16920/jeet/2024/v38i2/24200
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404192889
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404192889Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.16920/jeet/2024/v38i2/24200Digital Object Identifier
- Title
-
A Study on Regression Based Machine Learning Models to Predict the Student PerformanceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-01Full publication date if available
- Authors
-
Krishna Patil, Kiran Yesugade, Kiran B. NaikwadiList of authors in order
- Landing page
-
https://doi.org/10.16920/jeet/2024/v38i2/24200Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.16920/jeet/2024/v38i2/24200Direct OA link when available
- Concepts
-
Machine learning, Regression analysis, Computer science, Artificial intelligence, Regression, Statistics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404192889 |
|---|---|
| doi | https://doi.org/10.16920/jeet/2024/v38i2/24200 |
| ids.doi | https://doi.org/10.16920/jeet/2024/v38i2/24200 |
| ids.openalex | https://openalex.org/W4404192889 |
| fwci | 0.0 |
| type | article |
| title | A Study on Regression Based Machine Learning Models to Predict the Student Performance |
| biblio.issue | 2 |
| biblio.volume | 38 |
| biblio.last_page | 186 |
| biblio.first_page | 177 |
| topics[0].id | https://openalex.org/T11122 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9925000071525574 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1706 |
| topics[0].subfield.display_name | Computer Science Applications |
| topics[0].display_name | Online Learning and Analytics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C119857082 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6239756345748901 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[0].display_name | Machine learning |
| concepts[1].id | https://openalex.org/C152877465 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6028351783752441 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[1].display_name | Regression analysis |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.55987948179245 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5523757934570312 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C83546350 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5274757742881775 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[4].display_name | Regression |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.27198147773742676 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.17291924357414246 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/machine-learning |
| keywords[0].score | 0.6239756345748901 |
| keywords[0].display_name | Machine learning |
| keywords[1].id | https://openalex.org/keywords/regression-analysis |
| keywords[1].score | 0.6028351783752441 |
| keywords[1].display_name | Regression analysis |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.55987948179245 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5523757934570312 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/regression |
| keywords[4].score | 0.5274757742881775 |
| keywords[4].display_name | Regression |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.27198147773742676 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.17291924357414246 |
| keywords[6].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.16920/jeet/2024/v38i2/24200 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764748117 |
| locations[0].source.issn | 0971-5843, 2349-2473, 2394-1707 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0971-5843 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Engineering Education/Journal of engineering education transformations/Journal of engineering education transformation |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Engineering Education Transformations |
| locations[0].landing_page_url | https://doi.org/10.16920/jeet/2024/v38i2/24200 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101787880 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9407-2915 |
| authorships[0].author.display_name | Krishna Patil |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kamlesh V. Patil |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049700383 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kiran Yesugade |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kiran D. Yesugade |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114572423 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kiran B. Naikwadi |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Kiran B. Naikwadi |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.16920/jeet/2024/v38i2/24200 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Study on Regression Based Machine Learning Models to Predict the Student Performance |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11122 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9925000071525574 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1706 |
| primary_topic.subfield.display_name | Computer Science Applications |
| primary_topic.display_name | Online Learning and Analytics |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.16920/jeet/2024/v38i2/24200 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764748117 |
| best_oa_location.source.issn | 0971-5843, 2349-2473, 2394-1707 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0971-5843 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Engineering Education/Journal of engineering education transformations/Journal of engineering education transformation |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Engineering Education Transformations |
| best_oa_location.landing_page_url | https://doi.org/10.16920/jeet/2024/v38i2/24200 |
| primary_location.id | doi:10.16920/jeet/2024/v38i2/24200 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764748117 |
| primary_location.source.issn | 0971-5843, 2349-2473, 2394-1707 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0971-5843 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Engineering Education/Journal of engineering education transformations/Journal of engineering education transformation |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Engineering Education Transformations |
| primary_location.landing_page_url | https://doi.org/10.16920/jeet/2024/v38i2/24200 |
| publication_date | 2024-10-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.: | 1 |
| abstract_inverted_index.a | 105 |
| abstract_inverted_index.an | 64, 92 |
| abstract_inverted_index.as | 47 |
| abstract_inverted_index.in | 28, 151 |
| abstract_inverted_index.of | 7, 24, 95, 111, 135, 147 |
| abstract_inverted_index.on | 70, 119 |
| abstract_inverted_index.to | 20, 49, 103 |
| abstract_inverted_index.The | 37, 59, 78, 98, 127 |
| abstract_inverted_index.aid | 75 |
| abstract_inverted_index.all | 82 |
| abstract_inverted_index.and | 16, 35, 56, 67, 72, 88, 107, 116, 122, 143 |
| abstract_inverted_index.the | 5, 22, 120, 123, 133, 145 |
| abstract_inverted_index.use | 6 |
| abstract_inverted_index.was | 61, 102 |
| abstract_inverted_index.95%. | 97 |
| abstract_inverted_index.This | 2 |
| abstract_inverted_index.Tree | 14 |
| abstract_inverted_index.data | 60 |
| abstract_inverted_index.firm | 66 |
| abstract_inverted_index.from | 63, 129 |
| abstract_inverted_index.good | 50 |
| abstract_inverted_index.high | 25 |
| abstract_inverted_index.such | 46 |
| abstract_inverted_index.that | 42, 74, 81 |
| abstract_inverted_index.this | 130, 152 |
| abstract_inverted_index.when | 139 |
| abstract_inverted_index.with | 91 |
| abstract_inverted_index.India | 29 |
| abstract_inverted_index.Tutor | 162 |
| abstract_inverted_index.based | 69 |
| abstract_inverted_index.clear | 106 |
| abstract_inverted_index.lunch | 57 |
| abstract_inverted_index.study | 21, 38, 131 |
| abstract_inverted_index.their | 117 |
| abstract_inverted_index.three | 8, 31, 83 |
| abstract_inverted_index.(ROC). | 168 |
| abstract_inverted_index.Forest | 18 |
| abstract_inverted_index.Marked | 163 |
| abstract_inverted_index.Online | 155 |
| abstract_inverted_index.Random | 17 |
| abstract_inverted_index.access | 48 |
| abstract_inverted_index.across | 30 |
| abstract_inverted_index.affect | 43 |
| abstract_inverted_index.impact | 118 |
| abstract_inverted_index.models | 10, 85 |
| abstract_inverted_index.school | 26 |
| abstract_inverted_index.showed | 80 |
| abstract_inverted_index.(Linear | 11 |
| abstract_inverted_index.Machine | 113, 148, 160 |
| abstract_inverted_index.article | 3 |
| abstract_inverted_index.concise | 108 |
| abstract_inverted_index.dataset | 121 |
| abstract_inverted_index.domain. | 153 |
| abstract_inverted_index.factors | 41, 138 |
| abstract_inverted_index.methods | 73 |
| abstract_inverted_index.overall | 93 |
| abstract_inverted_index.primary | 100 |
| abstract_inverted_index.provide | 104 |
| abstract_inverted_index.results | 79 |
| abstract_inverted_index.student | 44, 141 |
| abstract_inverted_index.study's | 99 |
| abstract_inverted_index.various | 40, 112, 137 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Courses, | 156 |
| abstract_inverted_index.Dataset, | 159 |
| abstract_inverted_index.Decision | 13 |
| abstract_inverted_index.Learning | 114, 149, 157 |
| abstract_inverted_index.Physics, | 33 |
| abstract_inverted_index.Receiver | 165 |
| abstract_inverted_index.accuracy | 94 |
| abstract_inverted_index.accurate | 87 |
| abstract_inverted_index.analysis | 110 |
| abstract_inverted_index.analyzed | 68 |
| abstract_inverted_index.findings | 128 |
| abstract_inverted_index.internet | 51 |
| abstract_inverted_index.obtained | 62 |
| abstract_inverted_index.parental | 53 |
| abstract_inverted_index.produced | 86 |
| abstract_inverted_index.quality. | 58 |
| abstract_inverted_index.results, | 90 |
| abstract_inverted_index.students | 27 |
| abstract_inverted_index.Analytics | 158 |
| abstract_inverted_index.Keywords: | 154 |
| abstract_inverted_index.Learning, | 161 |
| abstract_inverted_index.Operating | 166 |
| abstract_inverted_index.analyzed. | 126 |
| abstract_inverted_index.analyzing | 140 |
| abstract_inverted_index.discusses | 4 |
| abstract_inverted_index.highlight | 144 |
| abstract_inverted_index.objective | 101 |
| abstract_inverted_index.plausible | 89 |
| abstract_inverted_index.subjects: | 32 |
| abstract_inverted_index.Chemistry, | 34 |
| abstract_inverted_index.attributes | 125 |
| abstract_inverted_index.identifies | 39 |
| abstract_inverted_index.importance | 134 |
| abstract_inverted_index.predictive | 124 |
| abstract_inverted_index.principles | 71 |
| abstract_inverted_index.processes. | 77 |
| abstract_inverted_index.regression | 9, 84 |
| abstract_inverted_index.techniques | 115, 150 |
| abstract_inverted_index.underscore | 132 |
| abstract_inverted_index.Assessment, | 164 |
| abstract_inverted_index.Regression) | 19 |
| abstract_inverted_index.Regression, | 12, 15 |
| abstract_inverted_index.background, | 55 |
| abstract_inverted_index.comparative | 109 |
| abstract_inverted_index.considering | 136 |
| abstract_inverted_index.educational | 54, 65 |
| abstract_inverted_index.performance | 23, 142 |
| abstract_inverted_index.Mathematics. | 36 |
| abstract_inverted_index.performance, | 45 |
| abstract_inverted_index.approximately | 96 |
| abstract_inverted_index.connectivity, | 52 |
| abstract_inverted_index.effectiveness | 146 |
| abstract_inverted_index.Characteristic | 167 |
| abstract_inverted_index.decision-making | 76 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.23187258 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |