A Study on the Features Selection Algorithm Based on the Measurement Method of the Distance Between Normal Distributions for Classification in Machine Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.17559/tv-20211102113116
Feature selection is an important technique that simplifies machine learning models to easily understand, shorten learning time, and reduce curve over-fitting or under-fitting. This paper presents a shape selection algorithm based on a method of investigating similarities between sampled shape values for classification variables (classes). This is based on the premise that the lower the similarity, the higher the usefulness of class classification. The confidence interval of a normal distribution is used to measure similarity. It is judged that the more overlapping the confidence intervals, the higher the similarity. The smaller the duplication of the confidence interval, the lower the similarity, and if the similarity is low, it can be used as a criterion for classification. Therefore, I propose an equation to apply this method. To confirm the usefulness of the equation, a colorectal cancer dataset with about 2000 genes was used and comparative experiments were performed with other feature selection algorithms. The comparison algorithms were Gini Index (10 features), mRMR (10 features), and relational matrix algorithms (7 features). Artificial neural networks were generally used as machine learning algorithms, and comparative verification was performed based on the rib one-out cross-validation method. As a result of the experiment, the results of the Gini index (85.487%), mRMR (87.09%), and relational matrix algorithms (87.09%) were better than those of 88.71% by selecting 10 features. In addition, experiments on iris, wine, glass, music emotions, seeds, and Japanese collection datasets were conducted on multiple classification problems. In the case of wine, the accuracy was 98.8% when all functions were used, but six functions were removed, resulting in 99.4% accuracy. In the case of music sensitivity, the accuracy was 51.7% when all 54 features were used, but when 20 features were removed, it improved to 61.3%. In the case of seeds, it was found that when the number of seeds decreased from 7 to 5, it slightly improved from 93.3% to 93.8%. In the case of iris, glass, and Japanese vowels, the accuracy did not increase even though the function was removed. Therefore, it can be concluded that features can be easily and effectively selected from the multi-class classification problem using the method proposed in this paper.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17559/tv-20211102113116
- https://hrcak.srce.hr/file/398876
- OA Status
- gold
- Cited By
- 1
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224252007
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224252007Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17559/tv-20211102113116Digital Object Identifier
- Title
-
A Study on the Features Selection Algorithm Based on the Measurement Method of the Distance Between Normal Distributions for Classification in Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-18Full publication date if available
- Authors
-
Byungju Shin, Minwoo Kim, Bohyun Wang, Joon S. LimList of authors in order
- Landing page
-
https://doi.org/10.17559/tv-20211102113116Publisher landing page
- PDF URL
-
https://hrcak.srce.hr/file/398876Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://hrcak.srce.hr/file/398876Direct OA link when available
- Concepts
-
Selection (genetic algorithm), Computer science, Artificial intelligence, Machine learning, Algorithm, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224252007 |
|---|---|
| doi | https://doi.org/10.17559/tv-20211102113116 |
| ids.doi | https://doi.org/10.17559/tv-20211102113116 |
| ids.openalex | https://openalex.org/W4224252007 |
| fwci | 0.29659978 |
| type | article |
| title | A Study on the Features Selection Algorithm Based on the Measurement Method of the Distance Between Normal Distributions for Classification in Machine Learning |
| biblio.issue | 3 |
| biblio.volume | 29 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14139 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.39329999685287476 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1403 |
| topics[0].subfield.display_name | Business and International Management |
| topics[0].display_name | E-commerce and Technology Innovations |
| is_xpac | False |
| apc_list.value | 400 |
| apc_list.currency | EUR |
| apc_list.value_usd | 431 |
| apc_paid.value | 400 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 431 |
| concepts[0].id | https://openalex.org/C81917197 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6863293647766113 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[0].display_name | Selection (genetic algorithm) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5647512078285217 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.536071240901947 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.49589595198631287 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.40343326330184937 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.34486907720565796 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/selection |
| keywords[0].score | 0.6863293647766113 |
| keywords[0].display_name | Selection (genetic algorithm) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5647512078285217 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.536071240901947 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.49589595198631287 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.40343326330184937 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.34486907720565796 |
| keywords[5].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.17559/tv-20211102113116 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S1003953879 |
| locations[0].source.issn | 1330-3651, 1848-6339 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1330-3651 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Tehnicki vjesnik - Technical Gazette |
| locations[0].source.host_organization | https://openalex.org/P4310314774 |
| locations[0].source.host_organization_name | Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering i |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310314774 |
| locations[0].source.host_organization_lineage_names | Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering i |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://hrcak.srce.hr/file/398876 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Tehnicki vjesnik - Technical Gazette |
| locations[0].landing_page_url | https://doi.org/10.17559/tv-20211102113116 |
| locations[1].id | pmh:oai:doaj.org/article:125b5fc448e04e348b04e07bf3d49999 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Tehnički Vjesnik, Vol 29, Iss 3, Pp 852-860 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/125b5fc448e04e348b04e07bf3d49999 |
| locations[2].id | pmh:oai:doaj.org/article:e381fd1bdd844a5eb3d5a92e03c9922d |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Tehnički Vjesnik, Vol 29, Iss 3, Pp 852-860 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/e381fd1bdd844a5eb3d5a92e03c9922d |
| locations[3].id | pmh:oai:hrcak.srce.hr:275300 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400071 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | University of Zagreb University Computing Centre (SRCE) |
| locations[3].source.host_organization | https://openalex.org/I181343428 |
| locations[3].source.host_organization_name | University of Zagreb |
| locations[3].source.host_organization_lineage | https://openalex.org/I181343428 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Tehnički vjesnik |
| locations[3].landing_page_url | https://hrcak.srce.hr/275300 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5042293936 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Byungju Shin |
| authorships[0].affiliations[0].raw_affiliation_string | k2soft (06140) 4th Floor, 39, Teheran-ro, 33-gil, Gangnam-gu, Seoul, Republic of Korea |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Byungju Shin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | k2soft (06140) 4th Floor, 39, Teheran-ro, 33-gil, Gangnam-gu, Seoul, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5100630439 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8627-4584 |
| authorships[1].author.display_name | Minwoo Kim |
| authorships[1].affiliations[0].raw_affiliation_string | k2soft (06140) 4th Floor, 39, Teheran-ro, 33-gil, Gangnam-gu, Seoul, Republic of Korea |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Minwoo Kim |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | k2soft (06140) 4th Floor, 39, Teheran-ro, 33-gil, Gangnam-gu, Seoul, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5053186784 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3112-2644 |
| authorships[2].author.display_name | Bohyun Wang |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I12832649 |
| authorships[2].affiliations[0].raw_affiliation_string | Gachon University, (13120) 531 AI Building, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I12832649 |
| authorships[2].institutions[0].ror | https://ror.org/03ryywt80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I12832649 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Gachon University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bohyun Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Gachon University, (13120) 531 AI Building, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5102803771 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0018-946X |
| authorships[3].author.display_name | Joon S. Lim |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I12832649 |
| authorships[3].affiliations[0].raw_affiliation_string | Gachon University, (13120) 531 AI Building, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I12832649 |
| authorships[3].institutions[0].ror | https://ror.org/03ryywt80 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I12832649 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Gachon University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Joon S. Lim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Gachon University, (13120) 531 AI Building, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hrcak.srce.hr/file/398876 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-26T00:00:00 |
| display_name | A Study on the Features Selection Algorithm Based on the Measurement Method of the Distance Between Normal Distributions for Classification in Machine Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-12-03T23:09:05.601824 |
| primary_topic.id | https://openalex.org/T14139 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.39329999685287476 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1403 |
| primary_topic.subfield.display_name | Business and International Management |
| primary_topic.display_name | E-commerce and Technology Innovations |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4313488044, https://openalex.org/W3209574120, https://openalex.org/W4312192474, https://openalex.org/W2033914206 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.17559/tv-20211102113116 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S1003953879 |
| best_oa_location.source.issn | 1330-3651, 1848-6339 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1330-3651 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Tehnicki vjesnik - Technical Gazette |
| best_oa_location.source.host_organization | https://openalex.org/P4310314774 |
| best_oa_location.source.host_organization_name | Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering i |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310314774 |
| best_oa_location.source.host_organization_lineage_names | Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering i |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://hrcak.srce.hr/file/398876 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Tehnicki vjesnik - Technical Gazette |
| best_oa_location.landing_page_url | https://doi.org/10.17559/tv-20211102113116 |
| primary_location.id | doi:10.17559/tv-20211102113116 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S1003953879 |
| primary_location.source.issn | 1330-3651, 1848-6339 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1330-3651 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Tehnicki vjesnik - Technical Gazette |
| primary_location.source.host_organization | https://openalex.org/P4310314774 |
| primary_location.source.host_organization_name | Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering i |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310314774 |
| primary_location.source.host_organization_lineage_names | Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering i |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://hrcak.srce.hr/file/398876 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Tehnicki vjesnik - Technical Gazette |
| primary_location.landing_page_url | https://doi.org/10.17559/tv-20211102113116 |
| publication_date | 2022-04-18 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W7066667914, https://openalex.org/W2487770199, https://openalex.org/W2163891305, https://openalex.org/W2155706105, https://openalex.org/W2165783263, https://openalex.org/W2103333826, https://openalex.org/W2154053567, https://openalex.org/W3110683067, https://openalex.org/W2155818328, https://openalex.org/W2792329176, https://openalex.org/W1671158656, https://openalex.org/W2098930218, https://openalex.org/W2092285120, https://openalex.org/W2036322050, https://openalex.org/W1568563740, https://openalex.org/W2014922235, https://openalex.org/W1979744342, https://openalex.org/W2065281378, https://openalex.org/W2014374971, https://openalex.org/W1995833382, https://openalex.org/W2011034643, https://openalex.org/W2998216295 |
| referenced_works_count | 22 |
| abstract_inverted_index.7 | 306 |
| abstract_inverted_index.I | 117 |
| abstract_inverted_index.a | 26, 32, 67, 112, 132, 192 |
| abstract_inverted_index.(7 | 167 |
| abstract_inverted_index.10 | 219 |
| abstract_inverted_index.20 | 282 |
| abstract_inverted_index.5, | 308 |
| abstract_inverted_index.54 | 276 |
| abstract_inverted_index.As | 191 |
| abstract_inverted_index.In | 221, 241, 264, 290, 316 |
| abstract_inverted_index.It | 75 |
| abstract_inverted_index.To | 125 |
| abstract_inverted_index.an | 3, 119 |
| abstract_inverted_index.as | 111, 175 |
| abstract_inverted_index.be | 109, 339, 344 |
| abstract_inverted_index.by | 217 |
| abstract_inverted_index.if | 102 |
| abstract_inverted_index.in | 261, 358 |
| abstract_inverted_index.is | 2, 46, 70, 76, 105 |
| abstract_inverted_index.it | 107, 286, 295, 309, 337 |
| abstract_inverted_index.of | 34, 60, 66, 93, 129, 194, 199, 215, 244, 267, 293, 302, 319 |
| abstract_inverted_index.on | 31, 48, 185, 224, 237 |
| abstract_inverted_index.or | 21 |
| abstract_inverted_index.to | 11, 72, 121, 288, 307, 314 |
| abstract_inverted_index.(10 | 158, 161 |
| abstract_inverted_index.The | 63, 89, 152 |
| abstract_inverted_index.all | 251, 275 |
| abstract_inverted_index.and | 17, 101, 142, 163, 179, 206, 231, 322, 346 |
| abstract_inverted_index.but | 255, 280 |
| abstract_inverted_index.can | 108, 338, 343 |
| abstract_inverted_index.did | 327 |
| abstract_inverted_index.for | 41, 114 |
| abstract_inverted_index.not | 328 |
| abstract_inverted_index.rib | 187 |
| abstract_inverted_index.six | 256 |
| abstract_inverted_index.the | 49, 52, 54, 56, 58, 79, 82, 85, 87, 91, 94, 97, 99, 103, 127, 130, 186, 195, 197, 200, 242, 246, 265, 270, 291, 300, 317, 325, 332, 350, 355 |
| abstract_inverted_index.was | 140, 182, 248, 272, 296, 334 |
| abstract_inverted_index.2000 | 138 |
| abstract_inverted_index.Gini | 156, 201 |
| abstract_inverted_index.This | 23, 45 |
| abstract_inverted_index.case | 243, 266, 292, 318 |
| abstract_inverted_index.even | 330 |
| abstract_inverted_index.from | 305, 312, 349 |
| abstract_inverted_index.low, | 106 |
| abstract_inverted_index.mRMR | 160, 204 |
| abstract_inverted_index.more | 80 |
| abstract_inverted_index.than | 213 |
| abstract_inverted_index.that | 6, 51, 78, 298, 341 |
| abstract_inverted_index.this | 123, 359 |
| abstract_inverted_index.used | 71, 110, 141, 174 |
| abstract_inverted_index.were | 145, 155, 172, 211, 235, 253, 258, 278, 284 |
| abstract_inverted_index.when | 250, 274, 281, 299 |
| abstract_inverted_index.with | 136, 147 |
| abstract_inverted_index.51.7% | 273 |
| abstract_inverted_index.93.3% | 313 |
| abstract_inverted_index.98.8% | 249 |
| abstract_inverted_index.99.4% | 262 |
| abstract_inverted_index.Index | 157 |
| abstract_inverted_index.about | 137 |
| abstract_inverted_index.apply | 122 |
| abstract_inverted_index.based | 30, 47, 184 |
| abstract_inverted_index.class | 61 |
| abstract_inverted_index.curve | 19 |
| abstract_inverted_index.found | 297 |
| abstract_inverted_index.genes | 139 |
| abstract_inverted_index.index | 202 |
| abstract_inverted_index.iris, | 225, 320 |
| abstract_inverted_index.lower | 53, 98 |
| abstract_inverted_index.music | 228, 268 |
| abstract_inverted_index.other | 148 |
| abstract_inverted_index.paper | 24 |
| abstract_inverted_index.seeds | 303 |
| abstract_inverted_index.shape | 27, 39 |
| abstract_inverted_index.those | 214 |
| abstract_inverted_index.time, | 16 |
| abstract_inverted_index.used, | 254, 279 |
| abstract_inverted_index.using | 354 |
| abstract_inverted_index.wine, | 226, 245 |
| abstract_inverted_index.61.3%. | 289 |
| abstract_inverted_index.88.71% | 216 |
| abstract_inverted_index.93.8%. | 315 |
| abstract_inverted_index.better | 212 |
| abstract_inverted_index.cancer | 134 |
| abstract_inverted_index.easily | 12, 345 |
| abstract_inverted_index.glass, | 227, 321 |
| abstract_inverted_index.higher | 57, 86 |
| abstract_inverted_index.judged | 77 |
| abstract_inverted_index.matrix | 165, 208 |
| abstract_inverted_index.method | 33, 356 |
| abstract_inverted_index.models | 10 |
| abstract_inverted_index.neural | 170 |
| abstract_inverted_index.normal | 68 |
| abstract_inverted_index.number | 301 |
| abstract_inverted_index.paper. | 360 |
| abstract_inverted_index.reduce | 18 |
| abstract_inverted_index.result | 193 |
| abstract_inverted_index.seeds, | 230, 294 |
| abstract_inverted_index.though | 331 |
| abstract_inverted_index.values | 40 |
| abstract_inverted_index.Feature | 0 |
| abstract_inverted_index.between | 37 |
| abstract_inverted_index.confirm | 126 |
| abstract_inverted_index.dataset | 135 |
| abstract_inverted_index.feature | 149 |
| abstract_inverted_index.machine | 8, 176 |
| abstract_inverted_index.measure | 73 |
| abstract_inverted_index.method. | 124, 190 |
| abstract_inverted_index.one-out | 188 |
| abstract_inverted_index.premise | 50 |
| abstract_inverted_index.problem | 353 |
| abstract_inverted_index.propose | 118 |
| abstract_inverted_index.results | 198 |
| abstract_inverted_index.sampled | 38 |
| abstract_inverted_index.shorten | 14 |
| abstract_inverted_index.smaller | 90 |
| abstract_inverted_index.vowels, | 324 |
| abstract_inverted_index.(87.09%) | 210 |
| abstract_inverted_index.Japanese | 232, 323 |
| abstract_inverted_index.accuracy | 247, 271, 326 |
| abstract_inverted_index.datasets | 234 |
| abstract_inverted_index.equation | 120 |
| abstract_inverted_index.features | 277, 283, 342 |
| abstract_inverted_index.function | 333 |
| abstract_inverted_index.improved | 287, 311 |
| abstract_inverted_index.increase | 329 |
| abstract_inverted_index.interval | 65 |
| abstract_inverted_index.learning | 9, 15, 177 |
| abstract_inverted_index.multiple | 238 |
| abstract_inverted_index.networks | 171 |
| abstract_inverted_index.presents | 25 |
| abstract_inverted_index.proposed | 357 |
| abstract_inverted_index.removed, | 259, 285 |
| abstract_inverted_index.removed. | 335 |
| abstract_inverted_index.selected | 348 |
| abstract_inverted_index.slightly | 310 |
| abstract_inverted_index.(87.09%), | 205 |
| abstract_inverted_index.accuracy. | 263 |
| abstract_inverted_index.addition, | 222 |
| abstract_inverted_index.algorithm | 29 |
| abstract_inverted_index.concluded | 340 |
| abstract_inverted_index.conducted | 236 |
| abstract_inverted_index.criterion | 113 |
| abstract_inverted_index.decreased | 304 |
| abstract_inverted_index.emotions, | 229 |
| abstract_inverted_index.equation, | 131 |
| abstract_inverted_index.features. | 220 |
| abstract_inverted_index.functions | 252, 257 |
| abstract_inverted_index.generally | 173 |
| abstract_inverted_index.important | 4 |
| abstract_inverted_index.interval, | 96 |
| abstract_inverted_index.performed | 146, 183 |
| abstract_inverted_index.problems. | 240 |
| abstract_inverted_index.resulting | 260 |
| abstract_inverted_index.selecting | 218 |
| abstract_inverted_index.selection | 1, 28, 150 |
| abstract_inverted_index.technique | 5 |
| abstract_inverted_index.variables | 43 |
| abstract_inverted_index.(85.487%), | 203 |
| abstract_inverted_index.(classes). | 44 |
| abstract_inverted_index.Artificial | 169 |
| abstract_inverted_index.Therefore, | 116, 336 |
| abstract_inverted_index.algorithms | 154, 166, 209 |
| abstract_inverted_index.collection | 233 |
| abstract_inverted_index.colorectal | 133 |
| abstract_inverted_index.comparison | 153 |
| abstract_inverted_index.confidence | 64, 83, 95 |
| abstract_inverted_index.features), | 159, 162 |
| abstract_inverted_index.features). | 168 |
| abstract_inverted_index.intervals, | 84 |
| abstract_inverted_index.relational | 164, 207 |
| abstract_inverted_index.similarity | 104 |
| abstract_inverted_index.simplifies | 7 |
| abstract_inverted_index.usefulness | 59, 128 |
| abstract_inverted_index.algorithms, | 178 |
| abstract_inverted_index.algorithms. | 151 |
| abstract_inverted_index.comparative | 143, 180 |
| abstract_inverted_index.duplication | 92 |
| abstract_inverted_index.effectively | 347 |
| abstract_inverted_index.experiment, | 196 |
| abstract_inverted_index.experiments | 144, 223 |
| abstract_inverted_index.multi-class | 351 |
| abstract_inverted_index.overlapping | 81 |
| abstract_inverted_index.similarity, | 55, 100 |
| abstract_inverted_index.similarity. | 74, 88 |
| abstract_inverted_index.understand, | 13 |
| abstract_inverted_index.distribution | 69 |
| abstract_inverted_index.over-fitting | 20 |
| abstract_inverted_index.sensitivity, | 269 |
| abstract_inverted_index.similarities | 36 |
| abstract_inverted_index.verification | 181 |
| abstract_inverted_index.investigating | 35 |
| abstract_inverted_index.classification | 42, 239, 352 |
| abstract_inverted_index.under-fitting. | 22 |
| abstract_inverted_index.classification. | 62, 115 |
| abstract_inverted_index.cross-validation | 189 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.52308917 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |