A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zones Article Swipe
Minh-Thang Do
,
Ted Soubdhan
,
Benoît Robyns
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1016/j.renene.2015.07.057
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1016/j.renene.2015.07.057
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.renene.2015.07.057
- OA Status
- green
- Cited By
- 19
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W1918247028
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W1918247028Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.renene.2015.07.057Digital Object Identifier
- Title
-
A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zonesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-07-29Full publication date if available
- Authors
-
Minh-Thang Do, Ted Soubdhan, Benoît RobynsList of authors in order
- Landing page
-
https://doi.org/10.1016/j.renene.2015.07.057Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hal.science/hal-01823260Direct OA link when available
- Concepts
-
Duration (music), Temperate climate, Multivariate statistics, Artificial neural network, Training (meteorology), Meteorology, Computer science, Climatology, Statistics, Econometrics, Environmental science, Mathematics, Geography, Machine learning, Ecology, Literature, Biology, Art, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2022: 6, 2021: 3, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W1918247028 |
|---|---|
| doi | https://doi.org/10.1016/j.renene.2015.07.057 |
| ids.doi | https://doi.org/10.1016/j.renene.2015.07.057 |
| ids.mag | 1918247028 |
| ids.openalex | https://openalex.org/W1918247028 |
| fwci | 1.57150457 |
| type | article |
| title | A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zones |
| biblio.issue | |
| biblio.volume | 85 |
| biblio.last_page | 964 |
| biblio.first_page | 959 |
| topics[0].id | https://openalex.org/T11276 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Solar Radiation and Photovoltaics |
| topics[1].id | https://openalex.org/T10468 |
| topics[1].field.id | https://openalex.org/fields/21 |
| topics[1].field.display_name | Energy |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2105 |
| topics[1].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[1].display_name | Photovoltaic System Optimization Techniques |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list.value | 4000 |
| apc_list.currency | USD |
| apc_list.value_usd | 4000 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C112758219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.705103874206543 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q16038819 |
| concepts[0].display_name | Duration (music) |
| concepts[1].id | https://openalex.org/C81461190 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6876076459884644 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q167466 |
| concepts[1].display_name | Temperate climate |
| concepts[2].id | https://openalex.org/C161584116 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5615942478179932 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[2].display_name | Multivariate statistics |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5525675415992737 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C2777211547 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48010873794555664 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[4].display_name | Training (meteorology) |
| concepts[5].id | https://openalex.org/C153294291 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46301624178886414 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[5].display_name | Meteorology |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4397527575492859 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C49204034 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43091100454330444 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[7].display_name | Climatology |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.40539610385894775 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C149782125 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3635736405849457 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[9].display_name | Econometrics |
| concepts[10].id | https://openalex.org/C39432304 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3506302535533905 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[10].display_name | Environmental science |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2389606535434723 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.231739342212677 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20864653587341309 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C18903297 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11401611566543579 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[14].display_name | Ecology |
| concepts[15].id | https://openalex.org/C124952713 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[15].display_name | Literature |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C142362112 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[17].display_name | Art |
| concepts[18].id | https://openalex.org/C127313418 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[18].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/duration |
| keywords[0].score | 0.705103874206543 |
| keywords[0].display_name | Duration (music) |
| keywords[1].id | https://openalex.org/keywords/temperate-climate |
| keywords[1].score | 0.6876076459884644 |
| keywords[1].display_name | Temperate climate |
| keywords[2].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[2].score | 0.5615942478179932 |
| keywords[2].display_name | Multivariate statistics |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5525675415992737 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/training |
| keywords[4].score | 0.48010873794555664 |
| keywords[4].display_name | Training (meteorology) |
| keywords[5].id | https://openalex.org/keywords/meteorology |
| keywords[5].score | 0.46301624178886414 |
| keywords[5].display_name | Meteorology |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4397527575492859 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/climatology |
| keywords[7].score | 0.43091100454330444 |
| keywords[7].display_name | Climatology |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.40539610385894775 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/econometrics |
| keywords[9].score | 0.3635736405849457 |
| keywords[9].display_name | Econometrics |
| keywords[10].id | https://openalex.org/keywords/environmental-science |
| keywords[10].score | 0.3506302535533905 |
| keywords[10].display_name | Environmental science |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2389606535434723 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.231739342212677 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.20864653587341309 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/ecology |
| keywords[14].score | 0.11401611566543579 |
| keywords[14].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.1016/j.renene.2015.07.057 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S815301 |
| locations[0].source.issn | 0960-1481, 1879-0682 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0960-1481 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Renewable Energy |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Renewable Energy |
| locations[0].landing_page_url | https://doi.org/10.1016/j.renene.2015.07.057 |
| locations[1].id | pmh:oai:HAL:hal-01823260v1 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Journal articles |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Renewable Energy, 2016, 85, pp.959-964. ⟨10.1016/j.renene.2015.07.057⟩ |
| locations[1].landing_page_url | https://hal.science/hal-01823260 |
| locations[2].id | pmh:oai:RePEc:eee:renene:v:85:y:2016:i:c:p:959-964 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://www.sciencedirect.com/science/article/pii/S096014811530152X |
| locations[3].id | pmh:oai:lilloa.univ-lille.fr:20.500.12210/20701 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306402203 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | LillOA (Université de Lille (University Of Lille)) |
| locations[3].source.host_organization | https://openalex.org/I4210123514 |
| locations[3].source.host_organization_name | Centre d'Etudes en Civilisations, Langues et Littératures Etrangères |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210123514 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | info:eu-repo/semantics/article |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://hdl.handle.net/20.500.12210/20701 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102070979 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9509-8474 |
| authorships[0].author.display_name | Minh-Thang Do |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210123794 |
| authorships[0].affiliations[0].raw_affiliation_string | LARGE - Laboratoire de Recherche en Géosciences et Energies [UR2_1] (Université des Antilles - Campus de Fouillole - 97159 Pointe-à-Pitre Cedex - France) |
| authorships[0].institutions[0].id | https://openalex.org/I4210123794 |
| authorships[0].institutions[0].ror | https://ror.org/024gts110 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I19894307, https://openalex.org/I4210123794, https://openalex.org/I4210148025, https://openalex.org/I52585520 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Géosciences Montpellier |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Minh-Thang Do |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | LARGE - Laboratoire de Recherche en Géosciences et Energies [UR2_1] (Université des Antilles - Campus de Fouillole - 97159 Pointe-à-Pitre Cedex - France) |
| authorships[1].author.id | https://openalex.org/A5055728629 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6402-8438 |
| authorships[1].author.display_name | Ted Soubdhan |
| authorships[1].countries | FR, GP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210142474 |
| authorships[1].affiliations[0].raw_affiliation_string | GRER - Groupe de Recherche sur les Energies Renouvelables (BP 592 UFR SEN - 97159 Pointe à Pitre, Guadeloupe - Guadeloupe) |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210123794 |
| authorships[1].affiliations[1].raw_affiliation_string | LARGE - Laboratoire de Recherche en Géosciences et Energies [UR2_1] (Université des Antilles - Campus de Fouillole - 97159 Pointe-à-Pitre Cedex - France) |
| authorships[1].institutions[0].id | https://openalex.org/I4210123794 |
| authorships[1].institutions[0].ror | https://ror.org/024gts110 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I19894307, https://openalex.org/I4210123794, https://openalex.org/I4210148025, https://openalex.org/I52585520 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | Géosciences Montpellier |
| authorships[1].institutions[1].id | https://openalex.org/I4210142474 |
| authorships[1].institutions[1].ror | https://ror.org/04sfmcd28 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210142474 |
| authorships[1].institutions[1].country_code | GP |
| authorships[1].institutions[1].display_name | Centre Hospitalier Universitaire Pointe-à-Pitre |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ted Soubdhan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | GRER - Groupe de Recherche sur les Energies Renouvelables (BP 592 UFR SEN - 97159 Pointe à Pitre, Guadeloupe - Guadeloupe), LARGE - Laboratoire de Recherche en Géosciences et Energies [UR2_1] (Université des Antilles - Campus de Fouillole - 97159 Pointe-à-Pitre Cedex - France) |
| authorships[2].author.id | https://openalex.org/A5049345240 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8145-3527 |
| authorships[2].author.display_name | Benoît Robyns |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2279609970, https://openalex.org/I4210102085 |
| authorships[2].affiliations[0].raw_affiliation_string | L2EP - Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 (Université de Lille - Bâtiment ESPRIT, Cité scientifique - 59655 Villeneuve d'Ascq - France) |
| authorships[2].institutions[0].id | https://openalex.org/I4210102085 |
| authorships[2].institutions[0].ror | https://ror.org/0186z1m53 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I190752583, https://openalex.org/I190861549, https://openalex.org/I2279609970, https://openalex.org/I3132096951, https://openalex.org/I4210102085, https://openalex.org/I4210134562, https://openalex.org/I7454413 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Laboratoire d'Électrotechnique et d'Électronique de Puissance de Lille |
| authorships[2].institutions[1].id | https://openalex.org/I2279609970 |
| authorships[2].institutions[1].ror | https://ror.org/02kzqn938 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I2279609970 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Université de Lille |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | None Benoît Robyns |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | L2EP - Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 (Université de Lille - Bâtiment ESPRIT, Cité scientifique - 59655 Villeneuve d'Ascq - France) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hal.science/hal-01823260 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2016-06-24T00:00:00 |
| display_name | A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zones |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11276 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Solar Radiation and Photovoltaics |
| related_works | https://openalex.org/W2348837382, https://openalex.org/W746329893, https://openalex.org/W4205872570, https://openalex.org/W4245971243, https://openalex.org/W2383431679, https://openalex.org/W1922805944, https://openalex.org/W230091440, https://openalex.org/W4253588120, https://openalex.org/W2383732295, https://openalex.org/W2942717012 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2017 |
| counts_by_year[6].cited_by_count | 3 |
| counts_by_year[7].year | 2016 |
| counts_by_year[7].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:HAL:hal-01823260v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402512 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| best_oa_location.source.host_organization | https://openalex.org/I1294671590 |
| best_oa_location.source.host_organization_name | Centre National de la Recherche Scientifique |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1294671590 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Journal articles |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Renewable Energy, 2016, 85, pp.959-964. ⟨10.1016/j.renene.2015.07.057⟩ |
| best_oa_location.landing_page_url | https://hal.science/hal-01823260 |
| primary_location.id | doi:10.1016/j.renene.2015.07.057 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S815301 |
| primary_location.source.issn | 0960-1481, 1879-0682 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0960-1481 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Renewable Energy |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Renewable Energy |
| primary_location.landing_page_url | https://doi.org/10.1016/j.renene.2015.07.057 |
| publication_date | 2015-07-29 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W6679514323, https://openalex.org/W1993771912, https://openalex.org/W1556542337, https://openalex.org/W2398240225, https://openalex.org/W2328578512, https://openalex.org/W1977544721, https://openalex.org/W2031939255, https://openalex.org/W2024032348, https://openalex.org/W2173259274, https://openalex.org/W2109582359, https://openalex.org/W2151998490, https://openalex.org/W1987765312, https://openalex.org/W2054761777, https://openalex.org/W1989649856, https://openalex.org/W6667926315, https://openalex.org/W6678337279, https://openalex.org/W6728862918, https://openalex.org/W6682435117, https://openalex.org/W2069365201, https://openalex.org/W2346626577, https://openalex.org/W4239884129, https://openalex.org/W1525481129, https://openalex.org/W2151968358, https://openalex.org/W1546647560, https://openalex.org/W2131237192, https://openalex.org/W2622582605, https://openalex.org/W2121340621, https://openalex.org/W2534771912, https://openalex.org/W2145346462 |
| referenced_works_count | 29 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.91336709 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |