A Survey of Deep Learning for Group-level Emotion Recognition Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.15276
With the advancement of artificial intelligence (AI) technology, group-level emotion recognition (GER) has emerged as an important area in analyzing human behavior. Early GER methods are primarily relied on handcrafted features. However, with the proliferation of Deep Learning (DL) techniques and their remarkable success in diverse tasks, neural networks have garnered increasing interest in GER. Unlike individual's emotion, group emotions exhibit diversity and dynamics. Presently, several DL approaches have been proposed to effectively leverage the rich information inherent in group-level image and enhance GER performance significantly. In this survey, we present a comprehensive review of DL techniques applied to GER, proposing a new taxonomy for the field cover all aspects of GER based on DL. The survey overviews datasets, the deep GER pipeline, and performance comparisons of the state-of-the-art methods past decade. Moreover, it summarizes and discuss the fundamental approaches and advanced developments for each aspect. Furthermore, we identify outstanding challenges and suggest potential avenues for the design of robust GER systems. To the best of our knowledge, thus survey represents the first comprehensive review of deep GER methods, serving as a pivotal references for future GER research endeavors.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.15276
- https://arxiv.org/pdf/2408.15276
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402703221
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402703221Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.15276Digital Object Identifier
- Title
-
A Survey of Deep Learning for Group-level Emotion RecognitionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-13Full publication date if available
- Authors
-
Xiaohua Huang, Jinke Xu, Wenming Zheng, Qirong Mao, Abhinav DhallList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.15276Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.15276Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.15276Direct OA link when available
- Concepts
-
Psychology, Group (periodic table), Emotion recognition, Cognitive psychology, Chemistry, Neuroscience, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402703221 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.15276 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.15276 |
| ids.openalex | https://openalex.org/W4402703221 |
| fwci | |
| type | preprint |
| title | A Survey of Deep Learning for Group-level Emotion Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10667 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.8413000106811523 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Emotion and Mood Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C15744967 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5768071413040161 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[0].display_name | Psychology |
| concepts[1].id | https://openalex.org/C2781311116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5707643032073975 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[1].display_name | Group (periodic table) |
| concepts[2].id | https://openalex.org/C2777438025 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5303324460983276 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1339090 |
| concepts[2].display_name | Emotion recognition |
| concepts[3].id | https://openalex.org/C180747234 |
| concepts[3].level | 1 |
| concepts[3].score | 0.35172152519226074 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[3].display_name | Cognitive psychology |
| concepts[4].id | https://openalex.org/C185592680 |
| concepts[4].level | 0 |
| concepts[4].score | 0.057552874088287354 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[4].display_name | Chemistry |
| concepts[5].id | https://openalex.org/C169760540 |
| concepts[5].level | 1 |
| concepts[5].score | 0.05723872780799866 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[5].display_name | Neuroscience |
| concepts[6].id | https://openalex.org/C178790620 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[6].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/psychology |
| keywords[0].score | 0.5768071413040161 |
| keywords[0].display_name | Psychology |
| keywords[1].id | https://openalex.org/keywords/group |
| keywords[1].score | 0.5707643032073975 |
| keywords[1].display_name | Group (periodic table) |
| keywords[2].id | https://openalex.org/keywords/emotion-recognition |
| keywords[2].score | 0.5303324460983276 |
| keywords[2].display_name | Emotion recognition |
| keywords[3].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[3].score | 0.35172152519226074 |
| keywords[3].display_name | Cognitive psychology |
| keywords[4].id | https://openalex.org/keywords/chemistry |
| keywords[4].score | 0.057552874088287354 |
| keywords[4].display_name | Chemistry |
| keywords[5].id | https://openalex.org/keywords/neuroscience |
| keywords[5].score | 0.05723872780799866 |
| keywords[5].display_name | Neuroscience |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.15276 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.15276 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.15276 |
| locations[1].id | doi:10.48550/arxiv.2408.15276 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.15276 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083815471 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8897-3517 |
| authorships[0].author.display_name | Xiaohua Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Xiaohua |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103044593 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6485-0966 |
| authorships[1].author.display_name | Jinke Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Jinke |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029771864 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7764-5179 |
| authorships[2].author.display_name | Wenming Zheng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zheng, Wenming |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068470372 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0616-4431 |
| authorships[3].author.display_name | Qirong Mao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mao, Qirong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5085376429 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2230-1440 |
| authorships[4].author.display_name | Abhinav Dhall |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Dhall, Abhinav |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.15276 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Survey of Deep Learning for Group-level Emotion Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10667 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.8413000106811523 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Emotion and Mood Recognition |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2931662336, https://openalex.org/W2077865380, https://openalex.org/W4401768695, https://openalex.org/W2765597752, https://openalex.org/W2134894512, https://openalex.org/W2083375246, https://openalex.org/W2067108088, https://openalex.org/W2085372204 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.15276 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.15276 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.15276 |
| primary_location.id | pmh:oai:arXiv.org:2408.15276 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.15276 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.15276 |
| publication_date | 2024-08-13 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 91, 101, 181 |
| abstract_inverted_index.DL | 66, 95 |
| abstract_inverted_index.In | 86 |
| abstract_inverted_index.To | 162 |
| abstract_inverted_index.an | 15 |
| abstract_inverted_index.as | 14, 180 |
| abstract_inverted_index.in | 18, 44, 53, 78 |
| abstract_inverted_index.it | 133 |
| abstract_inverted_index.of | 3, 35, 94, 110, 126, 158, 165, 175 |
| abstract_inverted_index.on | 28, 113 |
| abstract_inverted_index.to | 71, 98 |
| abstract_inverted_index.we | 89, 147 |
| abstract_inverted_index.DL. | 114 |
| abstract_inverted_index.GER | 23, 83, 111, 121, 160, 177, 186 |
| abstract_inverted_index.The | 115 |
| abstract_inverted_index.all | 108 |
| abstract_inverted_index.and | 40, 62, 81, 123, 135, 140, 151 |
| abstract_inverted_index.are | 25 |
| abstract_inverted_index.for | 104, 143, 155, 184 |
| abstract_inverted_index.has | 12 |
| abstract_inverted_index.new | 102 |
| abstract_inverted_index.our | 166 |
| abstract_inverted_index.the | 1, 33, 74, 105, 119, 127, 137, 156, 163, 171 |
| abstract_inverted_index.(AI) | 6 |
| abstract_inverted_index.(DL) | 38 |
| abstract_inverted_index.Deep | 36 |
| abstract_inverted_index.GER, | 99 |
| abstract_inverted_index.GER. | 54 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.area | 17 |
| abstract_inverted_index.been | 69 |
| abstract_inverted_index.best | 164 |
| abstract_inverted_index.deep | 120, 176 |
| abstract_inverted_index.each | 144 |
| abstract_inverted_index.have | 49, 68 |
| abstract_inverted_index.past | 130 |
| abstract_inverted_index.rich | 75 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.thus | 168 |
| abstract_inverted_index.with | 32 |
| abstract_inverted_index.(GER) | 11 |
| abstract_inverted_index.Early | 22 |
| abstract_inverted_index.based | 112 |
| abstract_inverted_index.cover | 107 |
| abstract_inverted_index.field | 106 |
| abstract_inverted_index.first | 172 |
| abstract_inverted_index.group | 58 |
| abstract_inverted_index.human | 20 |
| abstract_inverted_index.image | 80 |
| abstract_inverted_index.their | 41 |
| abstract_inverted_index.Unlike | 55 |
| abstract_inverted_index.design | 157 |
| abstract_inverted_index.future | 185 |
| abstract_inverted_index.neural | 47 |
| abstract_inverted_index.relied | 27 |
| abstract_inverted_index.review | 93, 174 |
| abstract_inverted_index.robust | 159 |
| abstract_inverted_index.survey | 116, 169 |
| abstract_inverted_index.tasks, | 46 |
| abstract_inverted_index.applied | 97 |
| abstract_inverted_index.aspect. | 145 |
| abstract_inverted_index.aspects | 109 |
| abstract_inverted_index.avenues | 154 |
| abstract_inverted_index.decade. | 131 |
| abstract_inverted_index.discuss | 136 |
| abstract_inverted_index.diverse | 45 |
| abstract_inverted_index.emerged | 13 |
| abstract_inverted_index.emotion | 9 |
| abstract_inverted_index.enhance | 82 |
| abstract_inverted_index.exhibit | 60 |
| abstract_inverted_index.methods | 24, 129 |
| abstract_inverted_index.pivotal | 182 |
| abstract_inverted_index.present | 90 |
| abstract_inverted_index.serving | 179 |
| abstract_inverted_index.several | 65 |
| abstract_inverted_index.success | 43 |
| abstract_inverted_index.suggest | 152 |
| abstract_inverted_index.survey, | 88 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.Learning | 37 |
| abstract_inverted_index.advanced | 141 |
| abstract_inverted_index.emotion, | 57 |
| abstract_inverted_index.emotions | 59 |
| abstract_inverted_index.garnered | 50 |
| abstract_inverted_index.identify | 148 |
| abstract_inverted_index.inherent | 77 |
| abstract_inverted_index.interest | 52 |
| abstract_inverted_index.leverage | 73 |
| abstract_inverted_index.methods, | 178 |
| abstract_inverted_index.networks | 48 |
| abstract_inverted_index.proposed | 70 |
| abstract_inverted_index.research | 187 |
| abstract_inverted_index.systems. | 161 |
| abstract_inverted_index.taxonomy | 103 |
| abstract_inverted_index.Moreover, | 132 |
| abstract_inverted_index.analyzing | 19 |
| abstract_inverted_index.behavior. | 21 |
| abstract_inverted_index.datasets, | 118 |
| abstract_inverted_index.diversity | 61 |
| abstract_inverted_index.dynamics. | 63 |
| abstract_inverted_index.features. | 30 |
| abstract_inverted_index.important | 16 |
| abstract_inverted_index.overviews | 117 |
| abstract_inverted_index.pipeline, | 122 |
| abstract_inverted_index.potential | 153 |
| abstract_inverted_index.primarily | 26 |
| abstract_inverted_index.proposing | 100 |
| abstract_inverted_index.Presently, | 64 |
| abstract_inverted_index.approaches | 67, 139 |
| abstract_inverted_index.artificial | 4 |
| abstract_inverted_index.challenges | 150 |
| abstract_inverted_index.endeavors. | 188 |
| abstract_inverted_index.increasing | 51 |
| abstract_inverted_index.knowledge, | 167 |
| abstract_inverted_index.references | 183 |
| abstract_inverted_index.remarkable | 42 |
| abstract_inverted_index.represents | 170 |
| abstract_inverted_index.summarizes | 134 |
| abstract_inverted_index.techniques | 39, 96 |
| abstract_inverted_index.advancement | 2 |
| abstract_inverted_index.comparisons | 125 |
| abstract_inverted_index.effectively | 72 |
| abstract_inverted_index.fundamental | 138 |
| abstract_inverted_index.group-level | 8, 79 |
| abstract_inverted_index.handcrafted | 29 |
| abstract_inverted_index.information | 76 |
| abstract_inverted_index.outstanding | 149 |
| abstract_inverted_index.performance | 84, 124 |
| abstract_inverted_index.recognition | 10 |
| abstract_inverted_index.technology, | 7 |
| abstract_inverted_index.Furthermore, | 146 |
| abstract_inverted_index.developments | 142 |
| abstract_inverted_index.individual's | 56 |
| abstract_inverted_index.intelligence | 5 |
| abstract_inverted_index.comprehensive | 92, 173 |
| abstract_inverted_index.proliferation | 34 |
| abstract_inverted_index.significantly. | 85 |
| abstract_inverted_index.state-of-the-art | 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |