A Survey of Graph and Attention Based Hyperspectral Image Classification Methods for Remote Sensing Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.09994
The use of Deep Learning techniques for classification in Hyperspectral Imaging (HSI) is rapidly growing and achieving improved performances. Due to the nature of the data captured by sensors that produce HSI images, a common issue is the dimensionality of the bands that may or may not contribute to the label class distinction. Due to the widespread nature of class labels, Principal Component Analysis is a common method used for reducing the dimensionality. However,there may exist methods that incorporate all bands of the Hyperspectral image with the help of the Attention mechanism. Furthermore, to yield better spectral spatial feature extraction, recent methods have also explored the usage of Graph Convolution Networks and their unique ability to use node features in prediction, which is akin to the pixel spectral makeup. In this survey we present a comprehensive summary of Graph based and Attention based methods to perform Hyperspectral Image Classification for remote sensing and aerial HSI images. We also summarize relevant datasets on which these techniques have been evaluated and benchmark the processing techniques.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.09994
- https://arxiv.org/pdf/2310.09994
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387724544
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387724544Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.09994Digital Object Identifier
- Title
-
A Survey of Graph and Attention Based Hyperspectral Image Classification Methods for Remote Sensing DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-16Full publication date if available
- Authors
-
Aryan Vats, Manan SuriList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.09994Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.09994Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.09994Direct OA link when available
- Concepts
-
Hyperspectral imaging, Computer science, Artificial intelligence, Pattern recognition (psychology), Graph, Dimensionality reduction, Principal component analysis, Feature extraction, Curse of dimensionality, Pixel, Benchmark (surveying), Remote sensing, Geography, Cartography, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387724544 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.09994 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.09994 |
| ids.openalex | https://openalex.org/W4387724544 |
| fwci | |
| type | preprint |
| title | A Survey of Graph and Attention Based Hyperspectral Image Classification Methods for Remote Sensing Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.91839998960495 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.946056604385376 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6940513849258423 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6768633723258972 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6296236515045166 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5355192422866821 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C70518039 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5172860622406006 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[5].display_name | Dimensionality reduction |
| concepts[6].id | https://openalex.org/C27438332 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5133985280990601 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[6].display_name | Principal component analysis |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5000808238983154 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C111030470 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4997572898864746 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[8].display_name | Curse of dimensionality |
| concepts[9].id | https://openalex.org/C160633673 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4569265842437744 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[9].display_name | Pixel |
| concepts[10].id | https://openalex.org/C185798385 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4272158443927765 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[10].display_name | Benchmark (surveying) |
| concepts[11].id | https://openalex.org/C62649853 |
| concepts[11].level | 1 |
| concepts[11].score | 0.40334630012512207 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[11].display_name | Remote sensing |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.11626070737838745 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C58640448 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07803040742874146 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[13].display_name | Cartography |
| concepts[14].id | https://openalex.org/C80444323 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[14].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.946056604385376 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6940513849258423 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6768633723258972 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6296236515045166 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.5355192422866821 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[5].score | 0.5172860622406006 |
| keywords[5].display_name | Dimensionality reduction |
| keywords[6].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[6].score | 0.5133985280990601 |
| keywords[6].display_name | Principal component analysis |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.5000808238983154 |
| keywords[7].display_name | Feature extraction |
| keywords[8].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[8].score | 0.4997572898864746 |
| keywords[8].display_name | Curse of dimensionality |
| keywords[9].id | https://openalex.org/keywords/pixel |
| keywords[9].score | 0.4569265842437744 |
| keywords[9].display_name | Pixel |
| keywords[10].id | https://openalex.org/keywords/benchmark |
| keywords[10].score | 0.4272158443927765 |
| keywords[10].display_name | Benchmark (surveying) |
| keywords[11].id | https://openalex.org/keywords/remote-sensing |
| keywords[11].score | 0.40334630012512207 |
| keywords[11].display_name | Remote sensing |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.11626070737838745 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/cartography |
| keywords[13].score | 0.07803040742874146 |
| keywords[13].display_name | Cartography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.09994 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.09994 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.09994 |
| locations[1].id | doi:10.48550/arxiv.2310.09994 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.09994 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5004084556 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Aryan Vats |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vats, Aryan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5008011360 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1417-3570 |
| authorships[1].author.display_name | Manan Suri |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Suri, Manan |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.09994 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-10-18T00:00:00 |
| display_name | A Survey of Graph and Attention Based Hyperspectral Image Classification Methods for Remote Sensing Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2579148721, https://openalex.org/W4387893611, https://openalex.org/W2347335694, https://openalex.org/W2091056927, https://openalex.org/W2067407580, https://openalex.org/W4317486777, https://openalex.org/W4389669152, https://openalex.org/W2038514069, https://openalex.org/W2132083814, https://openalex.org/W1967233468 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.09994 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.09994 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.09994 |
| primary_location.id | pmh:oai:arXiv.org:2310.09994 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.09994 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.09994 |
| publication_date | 2023-10-16 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 33, 65, 134 |
| abstract_inverted_index.In | 129 |
| abstract_inverted_index.We | 156 |
| abstract_inverted_index.by | 27 |
| abstract_inverted_index.in | 8, 119 |
| abstract_inverted_index.is | 12, 36, 64, 122 |
| abstract_inverted_index.of | 2, 23, 39, 58, 81, 88, 107, 137 |
| abstract_inverted_index.on | 161 |
| abstract_inverted_index.or | 44 |
| abstract_inverted_index.to | 20, 48, 54, 93, 115, 124, 144 |
| abstract_inverted_index.we | 132 |
| abstract_inverted_index.Due | 19, 53 |
| abstract_inverted_index.HSI | 31, 154 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.all | 79 |
| abstract_inverted_index.and | 15, 111, 140, 152, 168 |
| abstract_inverted_index.for | 6, 69, 149 |
| abstract_inverted_index.may | 43, 45, 74 |
| abstract_inverted_index.not | 46 |
| abstract_inverted_index.the | 21, 24, 37, 40, 49, 55, 71, 82, 86, 89, 105, 125, 170 |
| abstract_inverted_index.use | 1, 116 |
| abstract_inverted_index.Deep | 3 |
| abstract_inverted_index.akin | 123 |
| abstract_inverted_index.also | 103, 157 |
| abstract_inverted_index.been | 166 |
| abstract_inverted_index.data | 25 |
| abstract_inverted_index.have | 102, 165 |
| abstract_inverted_index.help | 87 |
| abstract_inverted_index.node | 117 |
| abstract_inverted_index.that | 29, 42, 77 |
| abstract_inverted_index.this | 130 |
| abstract_inverted_index.used | 68 |
| abstract_inverted_index.with | 85 |
| abstract_inverted_index.(HSI) | 11 |
| abstract_inverted_index.Graph | 108, 138 |
| abstract_inverted_index.Image | 147 |
| abstract_inverted_index.bands | 41, 80 |
| abstract_inverted_index.based | 139, 142 |
| abstract_inverted_index.class | 51, 59 |
| abstract_inverted_index.exist | 75 |
| abstract_inverted_index.image | 84 |
| abstract_inverted_index.issue | 35 |
| abstract_inverted_index.label | 50 |
| abstract_inverted_index.pixel | 126 |
| abstract_inverted_index.their | 112 |
| abstract_inverted_index.these | 163 |
| abstract_inverted_index.usage | 106 |
| abstract_inverted_index.which | 121, 162 |
| abstract_inverted_index.yield | 94 |
| abstract_inverted_index.aerial | 153 |
| abstract_inverted_index.better | 95 |
| abstract_inverted_index.common | 34, 66 |
| abstract_inverted_index.method | 67 |
| abstract_inverted_index.nature | 22, 57 |
| abstract_inverted_index.recent | 100 |
| abstract_inverted_index.remote | 150 |
| abstract_inverted_index.survey | 131 |
| abstract_inverted_index.unique | 113 |
| abstract_inverted_index.Imaging | 10 |
| abstract_inverted_index.ability | 114 |
| abstract_inverted_index.feature | 98 |
| abstract_inverted_index.growing | 14 |
| abstract_inverted_index.images, | 32 |
| abstract_inverted_index.images. | 155 |
| abstract_inverted_index.labels, | 60 |
| abstract_inverted_index.makeup. | 128 |
| abstract_inverted_index.methods | 76, 101, 143 |
| abstract_inverted_index.perform | 145 |
| abstract_inverted_index.present | 133 |
| abstract_inverted_index.produce | 30 |
| abstract_inverted_index.rapidly | 13 |
| abstract_inverted_index.sensing | 151 |
| abstract_inverted_index.sensors | 28 |
| abstract_inverted_index.spatial | 97 |
| abstract_inverted_index.summary | 136 |
| abstract_inverted_index.Analysis | 63 |
| abstract_inverted_index.Learning | 4 |
| abstract_inverted_index.Networks | 110 |
| abstract_inverted_index.captured | 26 |
| abstract_inverted_index.datasets | 160 |
| abstract_inverted_index.explored | 104 |
| abstract_inverted_index.features | 118 |
| abstract_inverted_index.improved | 17 |
| abstract_inverted_index.reducing | 70 |
| abstract_inverted_index.relevant | 159 |
| abstract_inverted_index.spectral | 96, 127 |
| abstract_inverted_index.Attention | 90, 141 |
| abstract_inverted_index.Component | 62 |
| abstract_inverted_index.Principal | 61 |
| abstract_inverted_index.achieving | 16 |
| abstract_inverted_index.benchmark | 169 |
| abstract_inverted_index.evaluated | 167 |
| abstract_inverted_index.summarize | 158 |
| abstract_inverted_index.contribute | 47 |
| abstract_inverted_index.mechanism. | 91 |
| abstract_inverted_index.processing | 171 |
| abstract_inverted_index.techniques | 5, 164 |
| abstract_inverted_index.widespread | 56 |
| abstract_inverted_index.Convolution | 109 |
| abstract_inverted_index.extraction, | 99 |
| abstract_inverted_index.incorporate | 78 |
| abstract_inverted_index.prediction, | 120 |
| abstract_inverted_index.techniques. | 172 |
| abstract_inverted_index.Furthermore, | 92 |
| abstract_inverted_index.distinction. | 52 |
| abstract_inverted_index.However,there | 73 |
| abstract_inverted_index.Hyperspectral | 9, 83, 146 |
| abstract_inverted_index.comprehensive | 135 |
| abstract_inverted_index.performances. | 18 |
| abstract_inverted_index.Classification | 148 |
| abstract_inverted_index.classification | 7 |
| abstract_inverted_index.dimensionality | 38 |
| abstract_inverted_index.dimensionality. | 72 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |