A Survey on Human Emotion Recognition Approaches, Databases and Applications Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.5565/rev/elcvia.795
This paper presents the various emotion classification and recognition systems which implement methods aiming at improving Human Machine Interaction. The modalities and approaches used for affect detection vary and contribute to accuracy and efficacy in detecting emotions of human beings. This paper discovers them in a comparison and descriptive manner. Various applications that use the methodologies in different contexts to address the challenges in real time are discussed. This survey also describes the databases that can be used as standard data sets in the process of emotion identification. Thus an integrated discussion of methods, databases used and applications pertaining to the emerging field of Affective Computing (AC) is done and surveyed.This paper presents the various emotion classification and recognition systems which implement methods aiming at improving Human Machine Interaction. The modalities and approaches used for affect detection vary and contribute to accuracy and efficacy in detecting emotions of human beings. This paper discovers them in a comparison and descriptive manner. Various applications that use the methodologies in different contexts to address the challenges in real time are discussed. This survey also describes the databases that can be used as standard data sets in the process of emotion identification. Thus an integrated discussion of methods, databases used and applications pertaining to the emerging field of Affective Computing (AC) is done and surveyed.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5565/rev/elcvia.795
- https://elcvia.cvc.uab.cat/article/download/v14-n2-vinola-vimaladevi/pdf_11
- OA Status
- diamond
- Cited By
- 70
- References
- 92
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2214134199
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2214134199Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5565/rev/elcvia.795Digital Object Identifier
- Title
-
A Survey on Human Emotion Recognition Approaches, Databases and ApplicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-12-16Full publication date if available
- Authors
-
C Vinola, K. VimaladeviList of authors in order
- Landing page
-
https://doi.org/10.5565/rev/elcvia.795Publisher landing page
- PDF URL
-
https://elcvia.cvc.uab.cat/article/download/v14-n2-vinola-vimaladevi/pdf_11Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://elcvia.cvc.uab.cat/article/download/v14-n2-vinola-vimaladevi/pdf_11Direct OA link when available
- Concepts
-
Modalities, Computer science, Field (mathematics), Identification (biology), Process (computing), Affective computing, Artificial intelligence, Database, Data science, Machine learning, Human–computer interaction, Sociology, Biology, Social science, Operating system, Mathematics, Botany, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
70Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 8, 2023: 9, 2022: 12, 2021: 11Per-year citation counts (last 5 years)
- References (count)
-
92Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2214134199 |
|---|---|
| doi | https://doi.org/10.5565/rev/elcvia.795 |
| ids.doi | https://doi.org/10.5565/rev/elcvia.795 |
| ids.mag | 2214134199 |
| ids.openalex | https://openalex.org/W2214134199 |
| fwci | 5.38789676 |
| type | article |
| title | A Survey on Human Emotion Recognition Approaches, Databases and Applications |
| biblio.issue | 2 |
| biblio.volume | 14 |
| biblio.last_page | 44 |
| biblio.first_page | 24 |
| topics[0].id | https://openalex.org/T10667 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Emotion and Mood Recognition |
| topics[1].id | https://openalex.org/T12496 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9854999780654907 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3207 |
| topics[1].subfield.display_name | Social Psychology |
| topics[1].display_name | Color perception and design |
| topics[2].id | https://openalex.org/T10429 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9830999970436096 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | EEG and Brain-Computer Interfaces |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779903281 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7571612596511841 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6888026 |
| concepts[0].display_name | Modalities |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7531468868255615 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C9652623 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6977961659431458 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[2].display_name | Field (mathematics) |
| concepts[3].id | https://openalex.org/C116834253 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6769211292266846 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[3].display_name | Identification (biology) |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6471423506736755 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C6438553 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5209944844245911 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1185804 |
| concepts[5].display_name | Affective computing |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44843098521232605 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C77088390 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4029463231563568 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[7].display_name | Database |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3958247900009155 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39507585763931274 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C107457646 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3579595685005188 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[10].display_name | Human–computer interaction |
| concepts[11].id | https://openalex.org/C144024400 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[11].display_name | Sociology |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C36289849 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[13].display_name | Social science |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C59822182 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[16].display_name | Botany |
| concepts[17].id | https://openalex.org/C202444582 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[17].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/modalities |
| keywords[0].score | 0.7571612596511841 |
| keywords[0].display_name | Modalities |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7531468868255615 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/field |
| keywords[2].score | 0.6977961659431458 |
| keywords[2].display_name | Field (mathematics) |
| keywords[3].id | https://openalex.org/keywords/identification |
| keywords[3].score | 0.6769211292266846 |
| keywords[3].display_name | Identification (biology) |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.6471423506736755 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/affective-computing |
| keywords[5].score | 0.5209944844245911 |
| keywords[5].display_name | Affective computing |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.44843098521232605 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/database |
| keywords[7].score | 0.4029463231563568 |
| keywords[7].display_name | Database |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.3958247900009155 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.39507585763931274 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[10].score | 0.3579595685005188 |
| keywords[10].display_name | Human–computer interaction |
| language | en |
| locations[0].id | doi:10.5565/rev/elcvia.795 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S205389208 |
| locations[0].source.issn | 1577-5097 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1577-5097 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ELCVIA Electronic Letters on Computer Vision and Image Analysis |
| locations[0].source.host_organization | https://openalex.org/P4310321573 |
| locations[0].source.host_organization_name | Computer Vision Center Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321573 |
| locations[0].source.host_organization_lineage_names | Computer Vision Center Press |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://elcvia.cvc.uab.cat/article/download/v14-n2-vinola-vimaladevi/pdf_11 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ELCVIA Electronic Letters on Computer Vision and Image Analysis |
| locations[0].landing_page_url | https://doi.org/10.5565/rev/elcvia.795 |
| locations[1].id | pmh:oai:ddd.uab.cat:144806 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400380 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Dipòsit Digital de Documents de la UAB (Universitat Autònoma de Barcelona) |
| locations[1].source.host_organization | https://openalex.org/I123044942 |
| locations[1].source.host_organization_name | Universitat Autònoma de Barcelona |
| locations[1].source.host_organization_lineage | https://openalex.org/I123044942 |
| locations[1].license | |
| locations[1].pdf_url | https://ddd.uab.cat/record/144806 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://ddd.uab.cat/record/144806 |
| locations[2].id | pmh:oai:dnet:uabarcelona_::97a8afe48c804c741dd743007e89a9db |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://ddd.uab.cat/record/144806 |
| locations[3].id | pmh:oai:doaj.org/article:d3e02c983b3747f7bb9b414fecd1fb88 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | ELCVIA Electronic Letters on Computer Vision and Image Analysis, Vol 14, Iss 2 (2015) |
| locations[3].landing_page_url | https://doaj.org/article/d3e02c983b3747f7bb9b414fecd1fb88 |
| locations[4].id | pmh:oai:raco.cat:article/302865 |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306401311 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | RACO (Revistes Catalanes amb Accés Obert) (Consorci de Serveis Universitaris de Catalunya) |
| locations[4].source.host_organization | https://openalex.org/I4210090028 |
| locations[4].source.host_organization_name | Consorci de Serveis Universitaris de Catalunya |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210090028 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | info:eu-repo/semantics/article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | ELCVIA: electronic letters on computer vision and image analysis; Vol. 14, Núm. 2 (2015); p. 24-44 |
| locations[4].landing_page_url | http://raco.cat/index.php/ELCVIA/article/view/302865 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5088308891 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | C Vinola |
| authorships[0].affiliations[0].raw_affiliation_string | Francis Xavier Engineering College |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | C. Vinola |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Francis Xavier Engineering College |
| authorships[1].author.id | https://openalex.org/A5084965893 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | K. Vimaladevi |
| authorships[1].affiliations[0].raw_affiliation_string | P.S.R.Engineering College |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | K. Vimaladevi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | P.S.R.Engineering College |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://elcvia.cvc.uab.cat/article/download/v14-n2-vinola-vimaladevi/pdf_11 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Survey on Human Emotion Recognition Approaches, Databases and Applications |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10667 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Emotion and Mood Recognition |
| related_works | https://openalex.org/W4362650935, https://openalex.org/W2980881520, https://openalex.org/W127837312, https://openalex.org/W2922283411, https://openalex.org/W4384789578, https://openalex.org/W3186236297, https://openalex.org/W2032362539, https://openalex.org/W4387421317, https://openalex.org/W2904925713, https://openalex.org/W2964266095 |
| cited_by_count | 70 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 12 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 11 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 4 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 7 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 9 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 8 |
| locations_count | 5 |
| best_oa_location.id | doi:10.5565/rev/elcvia.795 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S205389208 |
| best_oa_location.source.issn | 1577-5097 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1577-5097 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ELCVIA Electronic Letters on Computer Vision and Image Analysis |
| best_oa_location.source.host_organization | https://openalex.org/P4310321573 |
| best_oa_location.source.host_organization_name | Computer Vision Center Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321573 |
| best_oa_location.source.host_organization_lineage_names | Computer Vision Center Press |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://elcvia.cvc.uab.cat/article/download/v14-n2-vinola-vimaladevi/pdf_11 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ELCVIA Electronic Letters on Computer Vision and Image Analysis |
| best_oa_location.landing_page_url | https://doi.org/10.5565/rev/elcvia.795 |
| primary_location.id | doi:10.5565/rev/elcvia.795 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S205389208 |
| primary_location.source.issn | 1577-5097 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1577-5097 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ELCVIA Electronic Letters on Computer Vision and Image Analysis |
| primary_location.source.host_organization | https://openalex.org/P4310321573 |
| primary_location.source.host_organization_name | Computer Vision Center Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321573 |
| primary_location.source.host_organization_lineage_names | Computer Vision Center Press |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://elcvia.cvc.uab.cat/article/download/v14-n2-vinola-vimaladevi/pdf_11 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ELCVIA Electronic Letters on Computer Vision and Image Analysis |
| primary_location.landing_page_url | https://doi.org/10.5565/rev/elcvia.795 |
| publication_date | 2015-12-16 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2018543616, https://openalex.org/W2156503193, https://openalex.org/W2112945682, https://openalex.org/W36471207, https://openalex.org/W2098217009, https://openalex.org/W2129183325, https://openalex.org/W2139916508, https://openalex.org/W1976739836, https://openalex.org/W1977844243, https://openalex.org/W1967947242, https://openalex.org/W2139795045, https://openalex.org/W2024221294, https://openalex.org/W1689644917, https://openalex.org/W1587447546, https://openalex.org/W2002607236, https://openalex.org/W2132680170, https://openalex.org/W2155298482, https://openalex.org/W2074788634, https://openalex.org/W2168045655, https://openalex.org/W2010700035, https://openalex.org/W2087618018, https://openalex.org/W2043929537, https://openalex.org/W2023937851, https://openalex.org/W2140121947, https://openalex.org/W1991197819, https://openalex.org/W2154129660, https://openalex.org/W2075126953, https://openalex.org/W2052431898, https://openalex.org/W2105272649, https://openalex.org/W1606749791, https://openalex.org/W2040673555, https://openalex.org/W2164699598, https://openalex.org/W2085497785, https://openalex.org/W2068124150, https://openalex.org/W2125127226, https://openalex.org/W2103943262, https://openalex.org/W2106115875, https://openalex.org/W2137306662, https://openalex.org/W2542323081, https://openalex.org/W2161634108, https://openalex.org/W2106947945, https://openalex.org/W2008933718, https://openalex.org/W2045472600, https://openalex.org/W2044807399, https://openalex.org/W1978262206, https://openalex.org/W1995884877, https://openalex.org/W2127531292, https://openalex.org/W2154961933, https://openalex.org/W2396589722, https://openalex.org/W2146334809, https://openalex.org/W6607193717, https://openalex.org/W2109172886, https://openalex.org/W2096479899, https://openalex.org/W2132555391, https://openalex.org/W7045496425, https://openalex.org/W2122098299, https://openalex.org/W2002055708, https://openalex.org/W2407869609, https://openalex.org/W2081112272, https://openalex.org/W2172071592, https://openalex.org/W2156617293, https://openalex.org/W1993748501, https://openalex.org/W2030301943, https://openalex.org/W2109572311, https://openalex.org/W2126707560, https://openalex.org/W2097483966, https://openalex.org/W2154990411, https://openalex.org/W2034069713, https://openalex.org/W2023252883, https://openalex.org/W2078046525, https://openalex.org/W2042848062, https://openalex.org/W2250806155, https://openalex.org/W2055332436, https://openalex.org/W2142575466, https://openalex.org/W131010003, https://openalex.org/W2058750892, https://openalex.org/W2034322657, https://openalex.org/W2130314184, https://openalex.org/W2995034616, https://openalex.org/W175750906, https://openalex.org/W2476541801, https://openalex.org/W2339343773, https://openalex.org/W2117645142, https://openalex.org/W2146672416, https://openalex.org/W2122410182, https://openalex.org/W2028899742, https://openalex.org/W4285719527, https://openalex.org/W1552007786, https://openalex.org/W2092206588, https://openalex.org/W2071849225, https://openalex.org/W2072064926, https://openalex.org/W2045565604 |
| referenced_works_count | 92 |
| abstract_inverted_index.a | 45, 155 |
| abstract_inverted_index.an | 89, 199 |
| abstract_inverted_index.as | 78, 188 |
| abstract_inverted_index.at | 14, 124 |
| abstract_inverted_index.be | 76, 186 |
| abstract_inverted_index.in | 34, 44, 56, 63, 82, 144, 154, 166, 173, 192 |
| abstract_inverted_index.is | 107, 217 |
| abstract_inverted_index.of | 37, 85, 92, 103, 147, 195, 202, 213 |
| abstract_inverted_index.to | 30, 59, 99, 140, 169, 209 |
| abstract_inverted_index.The | 19, 129 |
| abstract_inverted_index.and | 7, 21, 28, 32, 47, 96, 109, 117, 131, 138, 142, 157, 206, 219 |
| abstract_inverted_index.are | 66, 176 |
| abstract_inverted_index.can | 75, 185 |
| abstract_inverted_index.for | 24, 134 |
| abstract_inverted_index.the | 3, 54, 61, 72, 83, 100, 113, 164, 171, 182, 193, 210 |
| abstract_inverted_index.use | 53, 163 |
| abstract_inverted_index.(AC) | 106, 216 |
| abstract_inverted_index.This | 0, 40, 68, 150, 178 |
| abstract_inverted_index.Thus | 88, 198 |
| abstract_inverted_index.also | 70, 180 |
| abstract_inverted_index.data | 80, 190 |
| abstract_inverted_index.done | 108, 218 |
| abstract_inverted_index.real | 64, 174 |
| abstract_inverted_index.sets | 81, 191 |
| abstract_inverted_index.that | 52, 74, 162, 184 |
| abstract_inverted_index.them | 43, 153 |
| abstract_inverted_index.time | 65, 175 |
| abstract_inverted_index.used | 23, 77, 95, 133, 187, 205 |
| abstract_inverted_index.vary | 27, 137 |
| abstract_inverted_index.Human | 16, 126 |
| abstract_inverted_index.field | 102, 212 |
| abstract_inverted_index.human | 38, 148 |
| abstract_inverted_index.paper | 1, 41, 111, 151 |
| abstract_inverted_index.which | 10, 120 |
| abstract_inverted_index.affect | 25, 135 |
| abstract_inverted_index.aiming | 13, 123 |
| abstract_inverted_index.survey | 69, 179 |
| abstract_inverted_index.Machine | 17, 127 |
| abstract_inverted_index.Various | 50, 160 |
| abstract_inverted_index.address | 60, 170 |
| abstract_inverted_index.beings. | 39, 149 |
| abstract_inverted_index.emotion | 5, 86, 115, 196 |
| abstract_inverted_index.manner. | 49, 159 |
| abstract_inverted_index.methods | 12, 122 |
| abstract_inverted_index.process | 84, 194 |
| abstract_inverted_index.systems | 9, 119 |
| abstract_inverted_index.various | 4, 114 |
| abstract_inverted_index.accuracy | 31, 141 |
| abstract_inverted_index.contexts | 58, 168 |
| abstract_inverted_index.efficacy | 33, 143 |
| abstract_inverted_index.emerging | 101, 211 |
| abstract_inverted_index.emotions | 36, 146 |
| abstract_inverted_index.methods, | 93, 203 |
| abstract_inverted_index.presents | 2, 112 |
| abstract_inverted_index.standard | 79, 189 |
| abstract_inverted_index.Affective | 104, 214 |
| abstract_inverted_index.Computing | 105, 215 |
| abstract_inverted_index.databases | 73, 94, 183, 204 |
| abstract_inverted_index.describes | 71, 181 |
| abstract_inverted_index.detecting | 35, 145 |
| abstract_inverted_index.detection | 26, 136 |
| abstract_inverted_index.different | 57, 167 |
| abstract_inverted_index.discovers | 42, 152 |
| abstract_inverted_index.implement | 11, 121 |
| abstract_inverted_index.improving | 15, 125 |
| abstract_inverted_index.surveyed. | 220 |
| abstract_inverted_index.approaches | 22, 132 |
| abstract_inverted_index.challenges | 62, 172 |
| abstract_inverted_index.comparison | 46, 156 |
| abstract_inverted_index.contribute | 29, 139 |
| abstract_inverted_index.discussed. | 67, 177 |
| abstract_inverted_index.discussion | 91, 201 |
| abstract_inverted_index.integrated | 90, 200 |
| abstract_inverted_index.modalities | 20, 130 |
| abstract_inverted_index.pertaining | 98, 208 |
| abstract_inverted_index.descriptive | 48, 158 |
| abstract_inverted_index.recognition | 8, 118 |
| abstract_inverted_index.Interaction. | 18, 128 |
| abstract_inverted_index.applications | 51, 97, 161, 207 |
| abstract_inverted_index.methodologies | 55, 165 |
| abstract_inverted_index.surveyed.This | 110 |
| abstract_inverted_index.classification | 6, 116 |
| abstract_inverted_index.identification. | 87, 197 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.95555556 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |