A Systematic Review of Explainable Artificial Intelligence in Terms of Different Application Domains and Tasks Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.7728343
Artificial intelligence (AI) and machine learning (ML) have recently been radically improved and are now being employed in almost every application domain to develop automated or semi-automated systems. To facilitate greater human acceptability of these systems, explainable artificial intelligence (XAI) has experienced significant growth over the last couple of years with the development of highly accurate models but with a paucity of explainability and interpretability. The literature shows evidence from numerous studies on the philosophy and methodologies of XAI. Nonetheless, there is an evident scarcity of secondary studies in connection with the application domains and tasks, let alone review studies following prescribed guidelines, that can enable researchers’ understanding of the current trends in XAI, which could lead to future research for domain- and application-specific method development. Therefore, this paper presents a systematic literature review (SLR) on the recent developments of XAI methods and evaluation metrics concerning different application domains and tasks. This study considers 137 articles published in recent years and identified through the prominent bibliographic databases. This systematic synthesis of research articles resulted in several analytical findings: XAI methods are mostly developed for safety-critical domains worldwide, deep learning and ensemble models are being exploited more than other types of AI/ML models, visual explanations are more acceptable to end-users and robust evaluation metrics are being developed to assess the quality of explanations. Research studies have been performed on the addition of explanations to widely used AI/ML models for expert users. However, more attention is required to generate explanations for general users from sensitive domains such as finance and the judicial system.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.7728343
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4324126452
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4324126452Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.7728343Digital Object Identifier
- Title
-
A Systematic Review of Explainable Artificial Intelligence in Terms of Different Application Domains and TasksWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-27Full publication date if available
- Authors
-
Mir Riyanul Islam, Mobyen Uddin Ahmed, Shaibal Barua, Shahina BegunList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.7728343Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.7728343Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Cognitive science, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4324126452 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.7728343 |
| ids.doi | https://doi.org/10.5281/zenodo.7728343 |
| ids.openalex | https://openalex.org/W4324126452 |
| fwci | 0.0 |
| type | review |
| title | A Systematic Review of Explainable Artificial Intelligence in Terms of Different Application Domains and Tasks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9390000104904175 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.506993293762207 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.498563289642334 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C188147891 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4111083447933197 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[2].display_name | Cognitive science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.2887727618217468 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.506993293762207 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.498563289642334 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/cognitive-science |
| keywords[2].score | 0.4111083447933197 |
| keywords[2].display_name | Cognitive science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.2887727618217468 |
| keywords[3].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.5281/zenodo.7728343 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.7728343 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5014229299 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0730-4405 |
| authorships[0].author.display_name | Mir Riyanul Islam |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Islam, Mir Riyanul |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5007258873 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1953-6086 |
| authorships[1].author.display_name | Mobyen Uddin Ahmed |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ahmed, Mobyen Uddin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5082647026 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7305-7169 |
| authorships[2].author.display_name | Shaibal Barua |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Barua, Shaibal |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5012461322 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Shahina Begun |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Begun, Shahina |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.7728343 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Systematic Review of Explainable Artificial Intelligence in Terms of Different Application Domains and Tasks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9390000104904175 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2130043461, https://openalex.org/W2530322880, https://openalex.org/W1596801655 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.7728343 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.7728343 |
| primary_location.id | doi:10.5281/zenodo.7728343 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.7728343 |
| publication_date | 2022-01-27 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 60, 131 |
| abstract_inverted_index.To | 29 |
| abstract_inverted_index.an | 83 |
| abstract_inverted_index.as | 256 |
| abstract_inverted_index.in | 18, 89, 113, 158, 175 |
| abstract_inverted_index.is | 82, 244 |
| abstract_inverted_index.of | 34, 49, 54, 62, 78, 86, 109, 140, 171, 200, 221, 231 |
| abstract_inverted_index.on | 73, 136, 228 |
| abstract_inverted_index.or | 26 |
| abstract_inverted_index.to | 23, 118, 208, 217, 233, 246 |
| abstract_inverted_index.137 | 155 |
| abstract_inverted_index.The | 66 |
| abstract_inverted_index.XAI | 141, 179 |
| abstract_inverted_index.and | 4, 13, 64, 76, 95, 123, 143, 150, 161, 190, 210, 258 |
| abstract_inverted_index.are | 14, 181, 193, 205, 214 |
| abstract_inverted_index.but | 58 |
| abstract_inverted_index.can | 105 |
| abstract_inverted_index.for | 121, 184, 238, 249 |
| abstract_inverted_index.has | 41 |
| abstract_inverted_index.let | 97 |
| abstract_inverted_index.now | 15 |
| abstract_inverted_index.the | 46, 52, 74, 92, 110, 137, 164, 219, 229, 259 |
| abstract_inverted_index.(AI) | 3 |
| abstract_inverted_index.(ML) | 7 |
| abstract_inverted_index.This | 152, 168 |
| abstract_inverted_index.XAI, | 114 |
| abstract_inverted_index.XAI. | 79 |
| abstract_inverted_index.been | 10, 226 |
| abstract_inverted_index.deep | 188 |
| abstract_inverted_index.from | 70, 252 |
| abstract_inverted_index.have | 8, 225 |
| abstract_inverted_index.last | 47 |
| abstract_inverted_index.lead | 117 |
| abstract_inverted_index.more | 196, 206, 242 |
| abstract_inverted_index.over | 45 |
| abstract_inverted_index.such | 255 |
| abstract_inverted_index.than | 197 |
| abstract_inverted_index.that | 104 |
| abstract_inverted_index.this | 128 |
| abstract_inverted_index.used | 235 |
| abstract_inverted_index.with | 51, 59, 91 |
| abstract_inverted_index.(SLR) | 135 |
| abstract_inverted_index.(XAI) | 40 |
| abstract_inverted_index.AI/ML | 201, 236 |
| abstract_inverted_index.alone | 98 |
| abstract_inverted_index.being | 16, 194, 215 |
| abstract_inverted_index.could | 116 |
| abstract_inverted_index.every | 20 |
| abstract_inverted_index.human | 32 |
| abstract_inverted_index.other | 198 |
| abstract_inverted_index.paper | 129 |
| abstract_inverted_index.shows | 68 |
| abstract_inverted_index.study | 153 |
| abstract_inverted_index.there | 81 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.types | 199 |
| abstract_inverted_index.users | 251 |
| abstract_inverted_index.which | 115 |
| abstract_inverted_index.years | 50, 160 |
| abstract_inverted_index.almost | 19 |
| abstract_inverted_index.assess | 218 |
| abstract_inverted_index.couple | 48 |
| abstract_inverted_index.domain | 22 |
| abstract_inverted_index.enable | 106 |
| abstract_inverted_index.expert | 239 |
| abstract_inverted_index.future | 119 |
| abstract_inverted_index.growth | 44 |
| abstract_inverted_index.highly | 55 |
| abstract_inverted_index.method | 125 |
| abstract_inverted_index.models | 57, 192, 237 |
| abstract_inverted_index.mostly | 182 |
| abstract_inverted_index.recent | 138, 159 |
| abstract_inverted_index.review | 99, 134 |
| abstract_inverted_index.robust | 211 |
| abstract_inverted_index.tasks, | 96 |
| abstract_inverted_index.tasks. | 151 |
| abstract_inverted_index.trends | 112 |
| abstract_inverted_index.users. | 240 |
| abstract_inverted_index.visual | 203 |
| abstract_inverted_index.widely | 234 |
| abstract_inverted_index.current | 111 |
| abstract_inverted_index.develop | 24 |
| abstract_inverted_index.domain- | 122 |
| abstract_inverted_index.domains | 94, 149, 186, 254 |
| abstract_inverted_index.evident | 84 |
| abstract_inverted_index.finance | 257 |
| abstract_inverted_index.general | 250 |
| abstract_inverted_index.greater | 31 |
| abstract_inverted_index.machine | 5 |
| abstract_inverted_index.methods | 142, 180 |
| abstract_inverted_index.metrics | 145, 213 |
| abstract_inverted_index.models, | 202 |
| abstract_inverted_index.paucity | 61 |
| abstract_inverted_index.quality | 220 |
| abstract_inverted_index.several | 176 |
| abstract_inverted_index.studies | 72, 88, 100, 224 |
| abstract_inverted_index.through | 163 |
| abstract_inverted_index.However, | 241 |
| abstract_inverted_index.Research | 223 |
| abstract_inverted_index.accurate | 56 |
| abstract_inverted_index.addition | 230 |
| abstract_inverted_index.articles | 156, 173 |
| abstract_inverted_index.employed | 17 |
| abstract_inverted_index.ensemble | 191 |
| abstract_inverted_index.evidence | 69 |
| abstract_inverted_index.generate | 247 |
| abstract_inverted_index.improved | 12 |
| abstract_inverted_index.judicial | 260 |
| abstract_inverted_index.learning | 6, 189 |
| abstract_inverted_index.numerous | 71 |
| abstract_inverted_index.presents | 130 |
| abstract_inverted_index.recently | 9 |
| abstract_inverted_index.required | 245 |
| abstract_inverted_index.research | 120, 172 |
| abstract_inverted_index.resulted | 174 |
| abstract_inverted_index.scarcity | 85 |
| abstract_inverted_index.systems, | 36 |
| abstract_inverted_index.systems. | 28 |
| abstract_inverted_index.Abstract: | 0 |
| abstract_inverted_index.attention | 243 |
| abstract_inverted_index.automated | 25 |
| abstract_inverted_index.considers | 154 |
| abstract_inverted_index.developed | 183, 216 |
| abstract_inverted_index.different | 147 |
| abstract_inverted_index.end-users | 209 |
| abstract_inverted_index.exploited | 195 |
| abstract_inverted_index.findings: | 178 |
| abstract_inverted_index.following | 101 |
| abstract_inverted_index.performed | 227 |
| abstract_inverted_index.prominent | 165 |
| abstract_inverted_index.published | 157 |
| abstract_inverted_index.radically | 11 |
| abstract_inverted_index.secondary | 87 |
| abstract_inverted_index.sensitive | 253 |
| abstract_inverted_index.synthesis | 170 |
| abstract_inverted_index.Artificial | 1 |
| abstract_inverted_index.Therefore, | 127 |
| abstract_inverted_index.acceptable | 207 |
| abstract_inverted_index.analytical | 177 |
| abstract_inverted_index.artificial | 38 |
| abstract_inverted_index.concerning | 146 |
| abstract_inverted_index.connection | 90 |
| abstract_inverted_index.databases. | 167 |
| abstract_inverted_index.evaluation | 144, 212 |
| abstract_inverted_index.facilitate | 30 |
| abstract_inverted_index.identified | 162 |
| abstract_inverted_index.literature | 67, 133 |
| abstract_inverted_index.philosophy | 75 |
| abstract_inverted_index.prescribed | 102 |
| abstract_inverted_index.systematic | 132, 169 |
| abstract_inverted_index.worldwide, | 187 |
| abstract_inverted_index.application | 21, 93, 148 |
| abstract_inverted_index.development | 53 |
| abstract_inverted_index.experienced | 42 |
| abstract_inverted_index.explainable | 37 |
| abstract_inverted_index.guidelines, | 103 |
| abstract_inverted_index.significant | 43 |
| abstract_inverted_index.system.<br> | 261 |
| abstract_inverted_index.Nonetheless, | 80 |
| abstract_inverted_index.development. | 126 |
| abstract_inverted_index.developments | 139 |
| abstract_inverted_index.explanations | 204, 232, 248 |
| abstract_inverted_index.intelligence | 2, 39 |
| abstract_inverted_index.acceptability | 33 |
| abstract_inverted_index.bibliographic | 166 |
| abstract_inverted_index.explanations. | 222 |
| abstract_inverted_index.methodologies | 77 |
| abstract_inverted_index.understanding | 108 |
| abstract_inverted_index.explainability | 63 |
| abstract_inverted_index.researchers’ | 107 |
| abstract_inverted_index.semi-automated | 27 |
| abstract_inverted_index.safety-critical | 185 |
| abstract_inverted_index.interpretability. | 65 |
| abstract_inverted_index.application-specific | 124 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.19016252 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |