A Three-Stage Anomaly Detection Framework for Traffic Videos Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1155/2022/9463559
As reported by the United Nations in 2021, road accidents cause 1.3 million deaths and 50 million injuries worldwide each year. Detecting traffic anomalies timely and taking immediate emergency response and rescue measures are essential to reduce casualties, economic losses, and traffic congestion. This paper proposed a three-stage method for video-based traffic anomaly detection. In the first stage, the ViVit network is employed as a feature extractor to capture the spatiotemporal features from the input video. In the second stage, the class and patch tokens are fed separately to the segment-level and video-level traffic anomaly detectors. In the third stage, we finished the construction of the entire composite traffic anomaly detection framework by fusing outputs of two traffic anomaly detectors above with different granularity. Experimental evaluation demonstrates that the proposed method outperforms the SOTA method with 2.07% AUC on the TAD testing overall set and 1.43% AUC on the TAD testing anomaly subset. This work provides a new reference for traffic anomaly detection research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2022/9463559
- https://downloads.hindawi.com/journals/jat/2022/9463559.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 71
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4284664380
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4284664380Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2022/9463559Digital Object Identifier
- Title
-
A Three-Stage Anomaly Detection Framework for Traffic VideosWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-05Full publication date if available
- Authors
-
Junzhou Chen, Jiancheng Wang, Jiajun Pu, Ronghui ZhangList of authors in order
- Landing page
-
https://doi.org/10.1155/2022/9463559Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/jat/2022/9463559.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/jat/2022/9463559.pdfDirect OA link when available
- Concepts
-
Anomaly detection, Anomaly (physics), Computer science, Stage (stratigraphy), Real-time computing, Data mining, Geology, Paleontology, Physics, Condensed matter physicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
71Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4284664380 |
|---|---|
| doi | https://doi.org/10.1155/2022/9463559 |
| ids.doi | https://doi.org/10.1155/2022/9463559 |
| ids.openalex | https://openalex.org/W4284664380 |
| fwci | 0.58739646 |
| type | article |
| title | A Three-Stage Anomaly Detection Framework for Traffic Videos |
| awards[0].id | https://openalex.org/G4427028770 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 52172350 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G5837698443 |
| awards[1].funder_id | https://openalex.org/F4320329791 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2021B1515120032 |
| awards[1].funder_display_name | Shenzhen Fundamental Research Program |
| awards[2].id | https://openalex.org/G5025365029 |
| awards[2].funder_id | https://openalex.org/F4320321921 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2021A1515011794 |
| awards[2].funder_display_name | Natural Science Foundation of Guangdong Province |
| awards[3].id | https://openalex.org/G7134914938 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 202206030005 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G990705054 |
| awards[4].funder_id | https://openalex.org/F4320329791 |
| awards[4].display_name | |
| awards[4].funder_award_id | 202206030005 |
| awards[4].funder_display_name | Shenzhen Fundamental Research Program |
| awards[5].id | https://openalex.org/G8045943330 |
| awards[5].funder_id | https://openalex.org/F4320321921 |
| awards[5].display_name | |
| awards[5].funder_award_id | 202206030005 |
| awards[5].funder_display_name | Natural Science Foundation of Guangdong Province |
| awards[6].id | https://openalex.org/G669517163 |
| awards[6].funder_id | https://openalex.org/F4320329791 |
| awards[6].display_name | |
| awards[6].funder_award_id | 52172350 |
| awards[6].funder_display_name | Shenzhen Fundamental Research Program |
| awards[7].id | https://openalex.org/G3880006370 |
| awards[7].funder_id | https://openalex.org/F4320321001 |
| awards[7].display_name | |
| awards[7].funder_award_id | JCYJ20200109142217397 |
| awards[7].funder_display_name | National Natural Science Foundation of China |
| awards[8].id | https://openalex.org/G7978321733 |
| awards[8].funder_id | https://openalex.org/F4320321921 |
| awards[8].display_name | |
| awards[8].funder_award_id | JCYJ20200109142217397 |
| awards[8].funder_display_name | Natural Science Foundation of Guangdong Province |
| awards[9].id | https://openalex.org/G3669461715 |
| awards[9].funder_id | https://openalex.org/F4320329791 |
| awards[9].display_name | |
| awards[9].funder_award_id | JCYJ20200109142217397 |
| awards[9].funder_display_name | Shenzhen Fundamental Research Program |
| awards[10].id | https://openalex.org/G8021143843 |
| awards[10].funder_id | https://openalex.org/F4320321001 |
| awards[10].display_name | |
| awards[10].funder_award_id | 2021A1515011794 |
| awards[10].funder_display_name | National Natural Science Foundation of China |
| awards[11].id | https://openalex.org/G7882721112 |
| awards[11].funder_id | https://openalex.org/F4320321001 |
| awards[11].display_name | |
| awards[11].funder_award_id | 202007050004 |
| awards[11].funder_display_name | National Natural Science Foundation of China |
| awards[12].id | https://openalex.org/G777815960 |
| awards[12].funder_id | https://openalex.org/F4320321921 |
| awards[12].display_name | |
| awards[12].funder_award_id | 52172350 |
| awards[12].funder_display_name | Natural Science Foundation of Guangdong Province |
| awards[13].id | https://openalex.org/G4703014527 |
| awards[13].funder_id | https://openalex.org/F4320329791 |
| awards[13].display_name | |
| awards[13].funder_award_id | 202007050004 |
| awards[13].funder_display_name | Shenzhen Fundamental Research Program |
| awards[14].id | https://openalex.org/G3516362453 |
| awards[14].funder_id | https://openalex.org/F4320321921 |
| awards[14].display_name | |
| awards[14].funder_award_id | 2021B1515120032 |
| awards[14].funder_display_name | Natural Science Foundation of Guangdong Province |
| awards[15].id | https://openalex.org/G4241919023 |
| awards[15].funder_id | https://openalex.org/F4320329791 |
| awards[15].display_name | |
| awards[15].funder_award_id | 2021A1515011794 |
| awards[15].funder_display_name | Shenzhen Fundamental Research Program |
| awards[16].id | https://openalex.org/G8910865087 |
| awards[16].funder_id | https://openalex.org/F4320321001 |
| awards[16].display_name | |
| awards[16].funder_award_id | 2021B1515120032 |
| awards[16].funder_display_name | National Natural Science Foundation of China |
| awards[17].id | https://openalex.org/G6088562951 |
| awards[17].funder_id | https://openalex.org/F4320324202 |
| awards[17].display_name | |
| awards[17].funder_award_id | 2021A1515011794 |
| awards[17].funder_display_name | Guangdong Science and Technology Department |
| awards[18].id | https://openalex.org/G670447930 |
| awards[18].funder_id | https://openalex.org/F4320324202 |
| awards[18].display_name | |
| awards[18].funder_award_id | 52172350 |
| awards[18].funder_display_name | Guangdong Science and Technology Department |
| awards[19].id | https://openalex.org/G1377377975 |
| awards[19].funder_id | https://openalex.org/F4320324202 |
| awards[19].display_name | |
| awards[19].funder_award_id | 202206030005 |
| awards[19].funder_display_name | Guangdong Science and Technology Department |
| awards[20].id | https://openalex.org/G412080421 |
| awards[20].funder_id | https://openalex.org/F4320324202 |
| awards[20].display_name | |
| awards[20].funder_award_id | 2021B1515120032 |
| awards[20].funder_display_name | Guangdong Science and Technology Department |
| awards[21].id | https://openalex.org/G6985744242 |
| awards[21].funder_id | https://openalex.org/F4320324202 |
| awards[21].display_name | |
| awards[21].funder_award_id | 202007050004 |
| awards[21].funder_display_name | Guangdong Science and Technology Department |
| awards[22].id | https://openalex.org/G2527395346 |
| awards[22].funder_id | https://openalex.org/F4320324202 |
| awards[22].display_name | |
| awards[22].funder_award_id | JCYJ20200109142217397 |
| awards[22].funder_display_name | Guangdong Science and Technology Department |
| awards[23].id | https://openalex.org/G5911668405 |
| awards[23].funder_id | https://openalex.org/F4320321921 |
| awards[23].display_name | |
| awards[23].funder_award_id | 202007050004 |
| awards[23].funder_display_name | Natural Science Foundation of Guangdong Province |
| biblio.issue | |
| biblio.volume | 2022 |
| biblio.last_page | 11 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9782999753952026 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321921 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Guangdong Province |
| funders[2].id | https://openalex.org/F4320324202 |
| funders[2].ror | https://ror.org/00tjzgn92 |
| funders[2].display_name | Guangdong Science and Technology Department |
| funders[3].id | https://openalex.org/F4320329791 |
| funders[3].ror | |
| funders[3].display_name | Shenzhen Fundamental Research Program |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | USD |
| apc_list.value_usd | 2400 |
| apc_paid.value | 2400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2400 |
| concepts[0].id | https://openalex.org/C739882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8391428589820862 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[0].display_name | Anomaly detection |
| concepts[1].id | https://openalex.org/C12997251 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6204828023910522 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[1].display_name | Anomaly (physics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6051393151283264 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C146357865 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5730886459350586 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1123245 |
| concepts[3].display_name | Stage (stratigraphy) |
| concepts[4].id | https://openalex.org/C79403827 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4550626277923584 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[4].display_name | Real-time computing |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.37694963812828064 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.09072032570838928 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C151730666 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[7].display_name | Paleontology |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C26873012 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[9].display_name | Condensed matter physics |
| keywords[0].id | https://openalex.org/keywords/anomaly-detection |
| keywords[0].score | 0.8391428589820862 |
| keywords[0].display_name | Anomaly detection |
| keywords[1].id | https://openalex.org/keywords/anomaly |
| keywords[1].score | 0.6204828023910522 |
| keywords[1].display_name | Anomaly (physics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6051393151283264 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/stage |
| keywords[3].score | 0.5730886459350586 |
| keywords[3].display_name | Stage (stratigraphy) |
| keywords[4].id | https://openalex.org/keywords/real-time-computing |
| keywords[4].score | 0.4550626277923584 |
| keywords[4].display_name | Real-time computing |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.37694963812828064 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.09072032570838928 |
| keywords[6].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1155/2022/9463559 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S75054922 |
| locations[0].source.issn | 0197-6729, 2042-3195 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0197-6729 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Advanced Transportation |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/jat/2022/9463559.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Advanced Transportation |
| locations[0].landing_page_url | https://doi.org/10.1155/2022/9463559 |
| locations[1].id | pmh:oai:doaj.org/article:28784bc89727444b9885a687ce052f4f |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Advanced Transportation, Vol 2022 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/28784bc89727444b9885a687ce052f4f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5003633670 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3388-3503 |
| authorships[0].author.display_name | Junzhou Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I157773358 |
| authorships[0].affiliations[1].raw_affiliation_string | Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology, Sun Yat-sen University, Guangzhou 510006, China |
| authorships[0].institutions[0].id | https://openalex.org/I157773358 |
| authorships[0].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sun Yat-sen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Junzhou Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology, Sun Yat-sen University, Guangzhou 510006, China, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China |
| authorships[1].author.id | https://openalex.org/A5010877051 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9599-0171 |
| authorships[1].author.display_name | Jiancheng Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[1].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology, Sun Yat-sen University, Guangzhou 510006, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I157773358 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China |
| authorships[1].institutions[0].id | https://openalex.org/I157773358 |
| authorships[1].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sun Yat-sen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiancheng Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology, Sun Yat-sen University, Guangzhou 510006, China, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China |
| authorships[2].author.id | https://openalex.org/A5059405158 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jiajun Pu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[2].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology, Sun Yat-sen University, Guangzhou 510006, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I157773358 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China |
| authorships[2].institutions[0].id | https://openalex.org/I157773358 |
| authorships[2].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sun Yat-sen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiajun Pu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology, Sun Yat-sen University, Guangzhou 510006, China, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China |
| authorships[3].author.id | https://openalex.org/A5029387407 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6107-4044 |
| authorships[3].author.display_name | Ronghui Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I157773358 |
| authorships[3].affiliations[1].raw_affiliation_string | Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology, Sun Yat-sen University, Guangzhou 510006, China |
| authorships[3].institutions[0].id | https://openalex.org/I157773358 |
| authorships[3].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sun Yat-sen University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ronghui Zhang |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology, Sun Yat-sen University, Guangzhou 510006, China, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/jat/2022/9463559.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Three-Stage Anomaly Detection Framework for Traffic Videos |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2806741695, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160, https://openalex.org/W3210364259, https://openalex.org/W4300558037, https://openalex.org/W2667207928, https://openalex.org/W2912112202, https://openalex.org/W4377864969, https://openalex.org/W3120251014 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2022/9463559 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S75054922 |
| best_oa_location.source.issn | 0197-6729, 2042-3195 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0197-6729 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Advanced Transportation |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/jat/2022/9463559.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Advanced Transportation |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2022/9463559 |
| primary_location.id | doi:10.1155/2022/9463559 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S75054922 |
| primary_location.source.issn | 0197-6729, 2042-3195 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0197-6729 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Advanced Transportation |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/jat/2022/9463559.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Advanced Transportation |
| primary_location.landing_page_url | https://doi.org/10.1155/2022/9463559 |
| publication_date | 2022-07-05 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3212310073, https://openalex.org/W2042838908, https://openalex.org/W2727748024, https://openalex.org/W2058233236, https://openalex.org/W2588847126, https://openalex.org/W3117542156, https://openalex.org/W3135934332, https://openalex.org/W3171021253, https://openalex.org/W3215723981, https://openalex.org/W1974475171, https://openalex.org/W3192533825, https://openalex.org/W3008849576, https://openalex.org/W4200461742, https://openalex.org/W2197013543, https://openalex.org/W2341201864, https://openalex.org/W6784088234, https://openalex.org/W2996705655, https://openalex.org/W2963048283, https://openalex.org/W1989597542, https://openalex.org/W2058732752, https://openalex.org/W2128730107, https://openalex.org/W2560335610, https://openalex.org/W1818594852, https://openalex.org/W2125105611, https://openalex.org/W2539222059, https://openalex.org/W2012931101, https://openalex.org/W1967456674, https://openalex.org/W1923779593, https://openalex.org/W2341058432, https://openalex.org/W2777342313, https://openalex.org/W2933801392, https://openalex.org/W2981741013, https://openalex.org/W3035240825, https://openalex.org/W3176309086, https://openalex.org/W2777556841, https://openalex.org/W2981638912, https://openalex.org/W3022606336, https://openalex.org/W3127213927, https://openalex.org/W2963795951, https://openalex.org/W3042642865, https://openalex.org/W4212876679, https://openalex.org/W2963061824, https://openalex.org/W2962716148, https://openalex.org/W6748495906, https://openalex.org/W4239510810, https://openalex.org/W1970088130, https://openalex.org/W3021058087, https://openalex.org/W2963307331, https://openalex.org/W3006520502, https://openalex.org/W3168984673, https://openalex.org/W2990591396, https://openalex.org/W3058842179, https://openalex.org/W3143609527, https://openalex.org/W3191725983, https://openalex.org/W6715501732, https://openalex.org/W2599354622, https://openalex.org/W2914570111, https://openalex.org/W2559927751, https://openalex.org/W2619082050, https://openalex.org/W2990503944, https://openalex.org/W3015538334, https://openalex.org/W4214612132, https://openalex.org/W2987228832, https://openalex.org/W2787947370, https://openalex.org/W3034572008, https://openalex.org/W2963610939, https://openalex.org/W1535778627, https://openalex.org/W4294568686, https://openalex.org/W3091846082, https://openalex.org/W4287241064, https://openalex.org/W2963524571 |
| referenced_works_count | 71 |
| abstract_inverted_index.a | 46, 64, 156 |
| abstract_inverted_index.50 | 15 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.In | 54, 76, 96 |
| abstract_inverted_index.as | 63 |
| abstract_inverted_index.by | 2, 112 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 61 |
| abstract_inverted_index.of | 104, 115 |
| abstract_inverted_index.on | 138, 147 |
| abstract_inverted_index.to | 35, 67, 88 |
| abstract_inverted_index.we | 100 |
| abstract_inverted_index.1.3 | 11 |
| abstract_inverted_index.AUC | 137, 146 |
| abstract_inverted_index.TAD | 140, 149 |
| abstract_inverted_index.and | 14, 25, 30, 40, 82, 91, 144 |
| abstract_inverted_index.are | 33, 85 |
| abstract_inverted_index.fed | 86 |
| abstract_inverted_index.for | 49, 159 |
| abstract_inverted_index.new | 157 |
| abstract_inverted_index.set | 143 |
| abstract_inverted_index.the | 3, 55, 58, 69, 73, 77, 80, 89, 97, 102, 105, 128, 132, 139, 148 |
| abstract_inverted_index.two | 116 |
| abstract_inverted_index.SOTA | 133 |
| abstract_inverted_index.This | 43, 153 |
| abstract_inverted_index.each | 19 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.road | 8 |
| abstract_inverted_index.that | 127 |
| abstract_inverted_index.with | 121, 135 |
| abstract_inverted_index.work | 154 |
| abstract_inverted_index.1.43% | 145 |
| abstract_inverted_index.2.07% | 136 |
| abstract_inverted_index.2021, | 7 |
| abstract_inverted_index.ViVit | 59 |
| abstract_inverted_index.above | 120 |
| abstract_inverted_index.cause | 10 |
| abstract_inverted_index.class | 81 |
| abstract_inverted_index.first | 56 |
| abstract_inverted_index.input | 74 |
| abstract_inverted_index.paper | 44 |
| abstract_inverted_index.patch | 83 |
| abstract_inverted_index.third | 98 |
| abstract_inverted_index.year. | 20 |
| abstract_inverted_index.United | 4 |
| abstract_inverted_index.deaths | 13 |
| abstract_inverted_index.entire | 106 |
| abstract_inverted_index.fusing | 113 |
| abstract_inverted_index.method | 48, 130, 134 |
| abstract_inverted_index.reduce | 36 |
| abstract_inverted_index.rescue | 31 |
| abstract_inverted_index.second | 78 |
| abstract_inverted_index.stage, | 57, 79, 99 |
| abstract_inverted_index.taking | 26 |
| abstract_inverted_index.timely | 24 |
| abstract_inverted_index.tokens | 84 |
| abstract_inverted_index.video. | 75 |
| abstract_inverted_index.Nations | 5 |
| abstract_inverted_index.anomaly | 52, 94, 109, 118, 151, 161 |
| abstract_inverted_index.capture | 68 |
| abstract_inverted_index.feature | 65 |
| abstract_inverted_index.losses, | 39 |
| abstract_inverted_index.million | 12, 16 |
| abstract_inverted_index.network | 60 |
| abstract_inverted_index.outputs | 114 |
| abstract_inverted_index.overall | 142 |
| abstract_inverted_index.subset. | 152 |
| abstract_inverted_index.testing | 141, 150 |
| abstract_inverted_index.traffic | 22, 41, 51, 93, 108, 117, 160 |
| abstract_inverted_index.economic | 38 |
| abstract_inverted_index.employed | 62 |
| abstract_inverted_index.features | 71 |
| abstract_inverted_index.finished | 101 |
| abstract_inverted_index.injuries | 17 |
| abstract_inverted_index.measures | 32 |
| abstract_inverted_index.proposed | 45, 129 |
| abstract_inverted_index.provides | 155 |
| abstract_inverted_index.reported | 1 |
| abstract_inverted_index.response | 29 |
| abstract_inverted_index.Detecting | 21 |
| abstract_inverted_index.accidents | 9 |
| abstract_inverted_index.anomalies | 23 |
| abstract_inverted_index.composite | 107 |
| abstract_inverted_index.detection | 110, 162 |
| abstract_inverted_index.detectors | 119 |
| abstract_inverted_index.different | 122 |
| abstract_inverted_index.emergency | 28 |
| abstract_inverted_index.essential | 34 |
| abstract_inverted_index.extractor | 66 |
| abstract_inverted_index.framework | 111 |
| abstract_inverted_index.immediate | 27 |
| abstract_inverted_index.reference | 158 |
| abstract_inverted_index.research. | 163 |
| abstract_inverted_index.worldwide | 18 |
| abstract_inverted_index.detection. | 53 |
| abstract_inverted_index.detectors. | 95 |
| abstract_inverted_index.evaluation | 125 |
| abstract_inverted_index.separately | 87 |
| abstract_inverted_index.casualties, | 37 |
| abstract_inverted_index.congestion. | 42 |
| abstract_inverted_index.outperforms | 131 |
| abstract_inverted_index.three-stage | 47 |
| abstract_inverted_index.video-based | 50 |
| abstract_inverted_index.video-level | 92 |
| abstract_inverted_index.Experimental | 124 |
| abstract_inverted_index.construction | 103 |
| abstract_inverted_index.demonstrates | 126 |
| abstract_inverted_index.granularity. | 123 |
| abstract_inverted_index.segment-level | 90 |
| abstract_inverted_index.spatiotemporal | 70 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5029387407 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I157773358 |
| citation_normalized_percentile.value | 0.67588825 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |