A Transfer Learning-Based Artificial Intelligence Model for Leaf Disease Assessment Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/su142013610
The paddy crop is the most essential and consumable agricultural produce. Leaf disease impacts the quality and productivity of paddy crops. Therefore, tackling this issue as early as possible is mandatory to reduce its impact. Consequently, in recent years, deep learning methods have been essential in identifying and classifying leaf disease. Deep learning is used to observe patterns in disease in crop leaves. For instance, organizing a crop’s leaf according to its shape, size, and color is significant. To facilitate farmers, this study proposed a Convolutional Neural Networks-based Deep Learning (CNN-based DL) architecture, including transfer learning (TL) for agricultural research. In this study, different TL architectures, viz. InceptionV3, VGG16, ResNet, SqueezeNet, and VGG19, were considered to carry out disease detection in paddy plants. The approach started with preprocessing the leaf image; afterward, semantic segmentation was used to extract a region of interest. Consequently, TL architectures were tuned with segmented images. Finally, the extra, fully connected layers of the Deep Neural Network (DNN) are used to classify and identify leaf disease. The proposed model was concerned with the biotic diseases of paddy leaves due to fungi and bacteria. The proposed model showed an accuracy rate of 96.4%, better than state-of-the-art models with different variants of TL architectures. After analysis of the outcomes, the study concluded that the anticipated model outperforms other existing models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/su142013610
- https://www.mdpi.com/2071-1050/14/20/13610/pdf?version=1666687310
- OA Status
- gold
- Cited By
- 66
- References
- 97
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4306969352
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4306969352Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/su142013610Digital Object Identifier
- Title
-
A Transfer Learning-Based Artificial Intelligence Model for Leaf Disease AssessmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-20Full publication date if available
- Authors
-
Vinay Gautam, Naresh Kumar Trivedi, Aman Singh, Heba G. Mohamed, Irene Delgado Noya, Preet Kaur, Nitin GoyalList of authors in order
- Landing page
-
https://doi.org/10.3390/su142013610Publisher landing page
- PDF URL
-
https://www.mdpi.com/2071-1050/14/20/13610/pdf?version=1666687310Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2071-1050/14/20/13610/pdf?version=1666687310Direct OA link when available
- Concepts
-
Deep learning, Artificial intelligence, Convolutional neural network, Transfer of learning, Computer science, Machine learning, Segmentation, Preprocessor, Artificial neural network, Agricultural engineering, Crop, Agriculture, Pattern recognition (psychology), Agronomy, Biology, Engineering, EcologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
66Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 16, 2024: 24, 2023: 24, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
97Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4306969352 |
|---|---|
| doi | https://doi.org/10.3390/su142013610 |
| ids.doi | https://doi.org/10.3390/su142013610 |
| ids.openalex | https://openalex.org/W4306969352 |
| fwci | 11.72828877 |
| type | article |
| title | A Transfer Learning-Based Artificial Intelligence Model for Leaf Disease Assessment |
| awards[0].id | https://openalex.org/G4316651516 |
| awards[0].funder_id | https://openalex.org/F4320322484 |
| awards[0].display_name | |
| awards[0].funder_award_id | PNURSP2022TR140 |
| awards[0].funder_display_name | Princess Nourah Bint Abdulrahman University |
| biblio.issue | 20 |
| biblio.volume | 14 |
| biblio.last_page | 13610 |
| biblio.first_page | 13610 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T14365 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9708999991416931 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Leaf Properties and Growth Measurement |
| topics[2].id | https://openalex.org/T10111 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9355999827384949 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Remote Sensing in Agriculture |
| funders[0].id | https://openalex.org/F4320322484 |
| funders[0].ror | https://ror.org/05b0cyh02 |
| funders[0].display_name | Princess Nourah Bint Abdulrahman University |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7687387466430664 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7352408170700073 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7239291667938232 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C150899416 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7174915075302124 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[3].display_name | Transfer of learning |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5819598436355591 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5377690196037292 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C89600930 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5370368957519531 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[6].display_name | Segmentation |
| concepts[7].id | https://openalex.org/C34736171 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4933110773563385 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[7].display_name | Preprocessor |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4737035930156708 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C88463610 |
| concepts[9].level | 1 |
| concepts[9].score | 0.45785367488861084 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[9].display_name | Agricultural engineering |
| concepts[10].id | https://openalex.org/C137580998 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45642775297164917 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q235352 |
| concepts[10].display_name | Crop |
| concepts[11].id | https://openalex.org/C118518473 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4286612272262573 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11451 |
| concepts[11].display_name | Agriculture |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4087609350681305 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C6557445 |
| concepts[13].level | 1 |
| concepts[13].score | 0.23981603980064392 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[13].display_name | Agronomy |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.16034099459648132 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.09955686330795288 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C18903297 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07645222544670105 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[16].display_name | Ecology |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.7687387466430664 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7352408170700073 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.7239291667938232 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[3].score | 0.7174915075302124 |
| keywords[3].display_name | Transfer of learning |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5819598436355591 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5377690196037292 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/segmentation |
| keywords[6].score | 0.5370368957519531 |
| keywords[6].display_name | Segmentation |
| keywords[7].id | https://openalex.org/keywords/preprocessor |
| keywords[7].score | 0.4933110773563385 |
| keywords[7].display_name | Preprocessor |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.4737035930156708 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[9].score | 0.45785367488861084 |
| keywords[9].display_name | Agricultural engineering |
| keywords[10].id | https://openalex.org/keywords/crop |
| keywords[10].score | 0.45642775297164917 |
| keywords[10].display_name | Crop |
| keywords[11].id | https://openalex.org/keywords/agriculture |
| keywords[11].score | 0.4286612272262573 |
| keywords[11].display_name | Agriculture |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.4087609350681305 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/agronomy |
| keywords[13].score | 0.23981603980064392 |
| keywords[13].display_name | Agronomy |
| keywords[14].id | https://openalex.org/keywords/biology |
| keywords[14].score | 0.16034099459648132 |
| keywords[14].display_name | Biology |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.09955686330795288 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/ecology |
| keywords[16].score | 0.07645222544670105 |
| keywords[16].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.3390/su142013610 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S10134376 |
| locations[0].source.issn | 2071-1050 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2071-1050 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Sustainability |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2071-1050/14/20/13610/pdf?version=1666687310 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sustainability |
| locations[0].landing_page_url | https://doi.org/10.3390/su142013610 |
| locations[1].id | pmh:oai:doaj.org/article:e66e6ef1f16249bea39134346b90e6a4 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sustainability, Vol 14, Iss 13610, p 13610 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/e66e6ef1f16249bea39134346b90e6a4 |
| locations[2].id | pmh:oai:mdpi.com:/2071-1050/14/20/13610/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sustainability; Volume 14; Issue 20; Pages: 13610 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/su142013610 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5039439727 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0258-5132 |
| authorships[0].author.display_name | Vinay Gautam |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[0].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India |
| authorships[0].institutions[0].id | https://openalex.org/I74319210 |
| authorships[0].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Chitkara University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vinay Gautam |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India |
| authorships[1].author.id | https://openalex.org/A5091652013 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4727-3885 |
| authorships[1].author.display_name | Naresh Kumar Trivedi |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[1].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India |
| authorships[1].institutions[0].id | https://openalex.org/I74319210 |
| authorships[1].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Chitkara University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Naresh K. Trivedi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India |
| authorships[2].author.id | https://openalex.org/A5073215738 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6571-327X |
| authorships[2].author.display_name | Aman Singh |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4387154151 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Engineering, Universidade Internacional do Cuanza, Estrada Nacional 250, Bairro Kaluapanda, Cuito-Bié 250, Angola |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210128504 |
| authorships[2].affiliations[1].raw_affiliation_string | Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I4387154151 |
| authorships[2].institutions[0].ror | https://ror.org/04t45q150 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4387154151 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Universidade Internacional do Cuanza |
| authorships[2].institutions[1].id | https://openalex.org/I4210128504 |
| authorships[2].institutions[1].ror | https://ror.org/048tesw25 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210128504 |
| authorships[2].institutions[1].country_code | ES |
| authorships[2].institutions[1].display_name | Universidad Europea del Atlántico |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aman Singh |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Engineering, Universidade Internacional do Cuanza, Estrada Nacional 250, Bairro Kaluapanda, Cuito-Bié 250, Angola, Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain |
| authorships[3].author.id | https://openalex.org/A5040941339 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0443-1049 |
| authorships[3].author.display_name | Heba G. Mohamed |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I106778892 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I106778892 |
| authorships[3].institutions[0].ror | https://ror.org/05b0cyh02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I106778892 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Princess Nourah bint Abdulrahman University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Heba G. Mohamed |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5008732621 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Irene Delgado Noya |
| authorships[4].countries | ES, MX |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210128504 |
| authorships[4].affiliations[0].raw_affiliation_string | Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I205571821, https://openalex.org/I4210097234, https://openalex.org/I87806610 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico |
| authorships[4].institutions[0].id | https://openalex.org/I4210128504 |
| authorships[4].institutions[0].ror | https://ror.org/048tesw25 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210128504 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Universidad Europea del Atlántico |
| authorships[4].institutions[1].id | https://openalex.org/I205571821 |
| authorships[4].institutions[1].ror | https://ror.org/05vss7635 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I205571821 |
| authorships[4].institutions[1].country_code | MX |
| authorships[4].institutions[1].display_name | Ibero American University |
| authorships[4].institutions[2].id | https://openalex.org/I87806610 |
| authorships[4].institutions[2].ror | https://ror.org/00pcv0g02 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I87806610 |
| authorships[4].institutions[2].country_code | MX |
| authorships[4].institutions[2].display_name | Ibero-American University Puebla |
| authorships[4].institutions[3].id | https://openalex.org/I4210097234 |
| authorships[4].institutions[3].ror | https://ror.org/00cxp1a86 |
| authorships[4].institutions[3].type | education |
| authorships[4].institutions[3].lineage | https://openalex.org/I4210097234 |
| authorships[4].institutions[3].country_code | MX |
| authorships[4].institutions[3].display_name | Universidad Internacional |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Irene Delgado Noya |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico, Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain |
| authorships[5].author.id | https://openalex.org/A5030450466 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1125-3201 |
| authorships[5].author.display_name | Preet Kaur |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I55124831 |
| authorships[5].affiliations[0].raw_affiliation_string | Electronics Engineering Department, J.C. Bose University of Science and Technology, YMCA (Formerly YMCA UST), Faridabad 121006, Haryana, India |
| authorships[5].institutions[0].id | https://openalex.org/I55124831 |
| authorships[5].institutions[0].ror | https://ror.org/014jqnm52 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I55124831 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | J.C. Bose University of Science & Technology, YMCA |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Preet Kaur |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Electronics Engineering Department, J.C. Bose University of Science and Technology, YMCA (Formerly YMCA UST), Faridabad 121006, Haryana, India |
| authorships[6].author.id | https://openalex.org/A5079524430 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7878-363X |
| authorships[6].author.display_name | Nitin Goyal |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210133503 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Central University of Haryana, Mahendragarh 123031, Haryana, India |
| authorships[6].institutions[0].id | https://openalex.org/I4210133503 |
| authorships[6].institutions[0].ror | https://ror.org/03mtwkv54 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210133503 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Central University of Haryana |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Nitin Goyal |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Computer Science and Engineering, Central University of Haryana, Mahendragarh 123031, Haryana, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2071-1050/14/20/13610/pdf?version=1666687310 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-10-22T00:00:00 |
| display_name | A Transfer Learning-Based Artificial Intelligence Model for Leaf Disease Assessment |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3183901164, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W4206357785, https://openalex.org/W3192840557, https://openalex.org/W4281381188, https://openalex.org/W2951211570, https://openalex.org/W3167935049 |
| cited_by_count | 66 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 16 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 24 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 24 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/su142013610 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S10134376 |
| best_oa_location.source.issn | 2071-1050 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2071-1050 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Sustainability |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2071-1050/14/20/13610/pdf?version=1666687310 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sustainability |
| best_oa_location.landing_page_url | https://doi.org/10.3390/su142013610 |
| primary_location.id | doi:10.3390/su142013610 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S10134376 |
| primary_location.source.issn | 2071-1050 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2071-1050 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Sustainability |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2071-1050/14/20/13610/pdf?version=1666687310 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sustainability |
| primary_location.landing_page_url | https://doi.org/10.3390/su142013610 |
| publication_date | 2022-10-20 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2886424099, https://openalex.org/W2019610851, https://openalex.org/W3136000369, https://openalex.org/W3017125705, https://openalex.org/W1978931600, https://openalex.org/W3049769860, https://openalex.org/W1989434047, https://openalex.org/W2625198283, https://openalex.org/W3015541959, https://openalex.org/W2935876814, https://openalex.org/W3022353848, https://openalex.org/W3004192481, https://openalex.org/W6772481743, https://openalex.org/W3201082406, https://openalex.org/W6775955120, https://openalex.org/W2129719391, https://openalex.org/W2169768163, https://openalex.org/W2892846124, https://openalex.org/W6755259816, https://openalex.org/W2912394723, https://openalex.org/W6753974872, https://openalex.org/W2970815987, https://openalex.org/W3012657291, https://openalex.org/W3016522735, https://openalex.org/W2884416373, https://openalex.org/W3215484246, https://openalex.org/W3010655531, https://openalex.org/W6772114320, https://openalex.org/W2921403460, https://openalex.org/W2970576551, https://openalex.org/W3119467924, https://openalex.org/W2989613844, https://openalex.org/W2911433502, https://openalex.org/W2072632368, https://openalex.org/W2733343268, https://openalex.org/W2470368200, https://openalex.org/W2753403518, https://openalex.org/W3012109855, https://openalex.org/W2769136071, https://openalex.org/W3036252790, https://openalex.org/W3010225408, https://openalex.org/W2887902433, https://openalex.org/W3027994476, https://openalex.org/W1976597375, https://openalex.org/W6784033831, https://openalex.org/W3088728688, https://openalex.org/W3145636498, https://openalex.org/W3203606403, https://openalex.org/W6783264592, https://openalex.org/W3208303488, https://openalex.org/W3090212582, https://openalex.org/W6803802151, https://openalex.org/W3089975778, https://openalex.org/W3036085849, https://openalex.org/W4281630927, https://openalex.org/W6760642542, https://openalex.org/W6767995013, https://openalex.org/W2903130316, https://openalex.org/W2805668621, https://openalex.org/W2895319015, https://openalex.org/W2733809450, https://openalex.org/W2050777968, https://openalex.org/W2019951109, https://openalex.org/W3015562698, https://openalex.org/W3046725353, https://openalex.org/W4200515758, https://openalex.org/W2183341477, https://openalex.org/W2097117768, https://openalex.org/W2964670245, https://openalex.org/W6757308341, https://openalex.org/W3159204917, https://openalex.org/W6794254139, https://openalex.org/W6729657291, https://openalex.org/W6684191040, https://openalex.org/W2194775991, https://openalex.org/W2270641383, https://openalex.org/W2731165298, https://openalex.org/W2902625477, https://openalex.org/W2915159483, https://openalex.org/W2980702392, https://openalex.org/W2942762043, https://openalex.org/W2966533690, https://openalex.org/W3195147880, https://openalex.org/W3018651684, https://openalex.org/W2997922231, https://openalex.org/W2904624762, https://openalex.org/W3087776982, https://openalex.org/W3157035263, https://openalex.org/W2618530766, https://openalex.org/W2885275449, https://openalex.org/W2548258044, https://openalex.org/W3091779296, https://openalex.org/W2998514016, https://openalex.org/W2922894083, https://openalex.org/W2972113714, https://openalex.org/W3212693600, https://openalex.org/W2892167904 |
| referenced_works_count | 97 |
| abstract_inverted_index.a | 66, 84, 138 |
| abstract_inverted_index.In | 100 |
| abstract_inverted_index.TL | 104, 143, 204 |
| abstract_inverted_index.To | 78 |
| abstract_inverted_index.an | 191 |
| abstract_inverted_index.as | 25, 27 |
| abstract_inverted_index.in | 36, 45, 58, 60, 120 |
| abstract_inverted_index.is | 3, 29, 53, 76 |
| abstract_inverted_index.of | 18, 140, 156, 179, 194, 203, 208 |
| abstract_inverted_index.to | 31, 55, 70, 115, 136, 164, 183 |
| abstract_inverted_index.DL) | 91 |
| abstract_inverted_index.For | 63 |
| abstract_inverted_index.The | 0, 123, 170, 187 |
| abstract_inverted_index.and | 7, 16, 47, 74, 111, 166, 185 |
| abstract_inverted_index.are | 162 |
| abstract_inverted_index.due | 182 |
| abstract_inverted_index.for | 97 |
| abstract_inverted_index.its | 33, 71 |
| abstract_inverted_index.out | 117 |
| abstract_inverted_index.the | 4, 14, 128, 151, 157, 176, 209, 211, 215 |
| abstract_inverted_index.was | 134, 173 |
| abstract_inverted_index.(TL) | 96 |
| abstract_inverted_index.Deep | 51, 88, 158 |
| abstract_inverted_index.Leaf | 11 |
| abstract_inverted_index.been | 43 |
| abstract_inverted_index.crop | 2, 61 |
| abstract_inverted_index.deep | 39 |
| abstract_inverted_index.have | 42 |
| abstract_inverted_index.leaf | 49, 68, 129, 168 |
| abstract_inverted_index.most | 5 |
| abstract_inverted_index.rate | 193 |
| abstract_inverted_index.than | 197 |
| abstract_inverted_index.that | 214 |
| abstract_inverted_index.this | 23, 81, 101 |
| abstract_inverted_index.used | 54, 135, 163 |
| abstract_inverted_index.viz. | 106 |
| abstract_inverted_index.were | 113, 145 |
| abstract_inverted_index.with | 126, 147, 175, 200 |
| abstract_inverted_index.(DNN) | 161 |
| abstract_inverted_index.After | 206 |
| abstract_inverted_index.carry | 116 |
| abstract_inverted_index.color | 75 |
| abstract_inverted_index.early | 26 |
| abstract_inverted_index.fully | 153 |
| abstract_inverted_index.fungi | 184 |
| abstract_inverted_index.issue | 24 |
| abstract_inverted_index.model | 172, 189, 217 |
| abstract_inverted_index.other | 219 |
| abstract_inverted_index.paddy | 1, 19, 121, 180 |
| abstract_inverted_index.size, | 73 |
| abstract_inverted_index.study | 82, 212 |
| abstract_inverted_index.tuned | 146 |
| abstract_inverted_index.96.4%, | 195 |
| abstract_inverted_index.Neural | 86, 159 |
| abstract_inverted_index.VGG16, | 108 |
| abstract_inverted_index.VGG19, | 112 |
| abstract_inverted_index.better | 196 |
| abstract_inverted_index.biotic | 177 |
| abstract_inverted_index.crops. | 20 |
| abstract_inverted_index.extra, | 152 |
| abstract_inverted_index.image; | 130 |
| abstract_inverted_index.layers | 155 |
| abstract_inverted_index.leaves | 181 |
| abstract_inverted_index.models | 199 |
| abstract_inverted_index.recent | 37 |
| abstract_inverted_index.reduce | 32 |
| abstract_inverted_index.region | 139 |
| abstract_inverted_index.shape, | 72 |
| abstract_inverted_index.showed | 190 |
| abstract_inverted_index.study, | 102 |
| abstract_inverted_index.years, | 38 |
| abstract_inverted_index.Network | 160 |
| abstract_inverted_index.ResNet, | 109 |
| abstract_inverted_index.disease | 12, 59, 118 |
| abstract_inverted_index.extract | 137 |
| abstract_inverted_index.images. | 149 |
| abstract_inverted_index.impact. | 34 |
| abstract_inverted_index.impacts | 13 |
| abstract_inverted_index.leaves. | 62 |
| abstract_inverted_index.methods | 41 |
| abstract_inverted_index.models. | 221 |
| abstract_inverted_index.observe | 56 |
| abstract_inverted_index.plants. | 122 |
| abstract_inverted_index.quality | 15 |
| abstract_inverted_index.started | 125 |
| abstract_inverted_index.Finally, | 150 |
| abstract_inverted_index.Learning | 89 |
| abstract_inverted_index.accuracy | 192 |
| abstract_inverted_index.analysis | 207 |
| abstract_inverted_index.approach | 124 |
| abstract_inverted_index.classify | 165 |
| abstract_inverted_index.crop’s | 67 |
| abstract_inverted_index.disease. | 50, 169 |
| abstract_inverted_index.diseases | 178 |
| abstract_inverted_index.existing | 220 |
| abstract_inverted_index.farmers, | 80 |
| abstract_inverted_index.identify | 167 |
| abstract_inverted_index.learning | 40, 52, 95 |
| abstract_inverted_index.patterns | 57 |
| abstract_inverted_index.possible | 28 |
| abstract_inverted_index.produce. | 10 |
| abstract_inverted_index.proposed | 83, 171, 188 |
| abstract_inverted_index.semantic | 132 |
| abstract_inverted_index.tackling | 22 |
| abstract_inverted_index.transfer | 94 |
| abstract_inverted_index.variants | 202 |
| abstract_inverted_index.according | 69 |
| abstract_inverted_index.bacteria. | 186 |
| abstract_inverted_index.concerned | 174 |
| abstract_inverted_index.concluded | 213 |
| abstract_inverted_index.connected | 154 |
| abstract_inverted_index.detection | 119 |
| abstract_inverted_index.different | 103, 201 |
| abstract_inverted_index.essential | 6, 44 |
| abstract_inverted_index.including | 93 |
| abstract_inverted_index.instance, | 64 |
| abstract_inverted_index.interest. | 141 |
| abstract_inverted_index.mandatory | 30 |
| abstract_inverted_index.outcomes, | 210 |
| abstract_inverted_index.research. | 99 |
| abstract_inverted_index.segmented | 148 |
| abstract_inverted_index.(CNN-based | 90 |
| abstract_inverted_index.Therefore, | 21 |
| abstract_inverted_index.afterward, | 131 |
| abstract_inverted_index.considered | 114 |
| abstract_inverted_index.consumable | 8 |
| abstract_inverted_index.facilitate | 79 |
| abstract_inverted_index.organizing | 65 |
| abstract_inverted_index.SqueezeNet, | 110 |
| abstract_inverted_index.anticipated | 216 |
| abstract_inverted_index.classifying | 48 |
| abstract_inverted_index.identifying | 46 |
| abstract_inverted_index.outperforms | 218 |
| abstract_inverted_index.InceptionV3, | 107 |
| abstract_inverted_index.agricultural | 9, 98 |
| abstract_inverted_index.productivity | 17 |
| abstract_inverted_index.segmentation | 133 |
| abstract_inverted_index.significant. | 77 |
| abstract_inverted_index.Consequently, | 35, 142 |
| abstract_inverted_index.Convolutional | 85 |
| abstract_inverted_index.architecture, | 92 |
| abstract_inverted_index.architectures | 144 |
| abstract_inverted_index.preprocessing | 127 |
| abstract_inverted_index.Networks-based | 87 |
| abstract_inverted_index.architectures, | 105 |
| abstract_inverted_index.architectures. | 205 |
| abstract_inverted_index.state-of-the-art | 198 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5079524430 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I4210133503 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.99143236 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |