A Trust-By-Learning Framework for Secure 6G Wireless Networks Under Native Generative AI Attacks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/ojcoms.2025.3591535
Sixth-generation wireless networks will become vulnerable due to native generative AI (GenAI)-driven intelligent poisoning attacks in both the radio unit and the core network. In particular, network parameters and metrics in cross-layer design pose fundamentally uncertain conditions and can be compromised through the native GenAI mechanism, which leverages data augmentation and reconstruction capabilities. This work investigates the capabilities of native GenAI to create novel poisoning attacks in wireless networks, while investigating their impact through uncertainty-informed root analysis. Then, detected attacks are mitigated by developing a trustworthy service aggregation in the wireless network. First, a joint decision problem is formulated to generate intelligent poisoning attacks, understand their root cause by defining a new measure of uncertainty as plausibility, and mitigate them through trustworthy service aggregation in wireless networks. Second, to address the challenges of the formulated problem, a novel Trust-By-Learning (TBL) framework is developed. The proposed TBL framework primarily consists of three components: 1) a native GenAI mechanism that can penetrate intelligent poisoning attacks in wireless networks’ metrics and parameters; 2) a Dempster-Shafer-based evidence theoretic mechanism that is developed to understand the root cause of inherently uncertainty of those attacks to quantify the trust for further mitigation; and 3) a meta-reinforcement-based Markov Decision Process learning framework that can mitigate the intelligent attacks by enforcing trustworthy service aggregation. Extensive experimental analysis demonstrates that native GenAI methods, such as generative adversarial network (GAN), variational autoencoder (VAE), and autoencoder have significant capability to enforce poisoning attacks. Results show that the autoencoder performs significantly better in generating poisoning attacks capabilities of 98.2%, 97.4%, and 95% for Amazon, Netflix, and Download services, respectively. The proposed TBL framework effectively replicates intelligent attack dependencies by achieving a trust score of 0.972, 0.922, and 0.892 for Amazon, Download, and Netflix services, respectively. Finally, the proposed TBL framework shows efficacy in understanding the trust in GenAI-driven intelligent poisoning attacks on network parameters and metrics by quantifying root causes and mitigating rates.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/ojcoms.2025.3591535
- OA Status
- gold
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412567061
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412567061Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/ojcoms.2025.3591535Digital Object Identifier
- Title
-
A Trust-By-Learning Framework for Secure 6G Wireless Networks Under Native Generative AI AttacksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Md. Shirajum Munir, Sravanthi Proddatoori, Manjushree Muralidhara, Trinidad Mario Dena, Walid Saad, Zhu Han, Sachin ShettyList of authors in order
- Landing page
-
https://doi.org/10.1109/ojcoms.2025.3591535Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/ojcoms.2025.3591535Direct OA link when available
- Concepts
-
Generative grammar, Computer science, Computer security, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412567061 |
|---|---|
| doi | https://doi.org/10.1109/ojcoms.2025.3591535 |
| ids.doi | https://doi.org/10.1109/ojcoms.2025.3591535 |
| ids.openalex | https://openalex.org/W4412567061 |
| fwci | 0.0 |
| type | article |
| title | A Trust-By-Learning Framework for Secure 6G Wireless Networks Under Native Generative AI Attacks |
| biblio.issue | |
| biblio.volume | 6 |
| biblio.last_page | 6065 |
| biblio.first_page | 6045 |
| topics[0].id | https://openalex.org/T11504 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9825999736785889 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Advanced Authentication Protocols Security |
| topics[1].id | https://openalex.org/T10964 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9796000123023987 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Wireless Communication Security Techniques |
| topics[2].id | https://openalex.org/T12122 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.96670001745224 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1708 |
| topics[2].subfield.display_name | Hardware and Architecture |
| topics[2].display_name | Physical Unclonable Functions (PUFs) and Hardware Security |
| is_xpac | False |
| apc_list.value | 1750 |
| apc_list.currency | USD |
| apc_list.value_usd | 1750 |
| apc_paid.value | 1750 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1750 |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6289348006248474 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5754489302635193 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C38652104 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4103524088859558 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[2].display_name | Computer security |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.37027567625045776 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.6289348006248474 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5754489302635193 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-security |
| keywords[2].score | 0.4103524088859558 |
| keywords[2].display_name | Computer security |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.37027567625045776 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1109/ojcoms.2025.3591535 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202420 |
| locations[0].source.issn | 2644-125X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2644-125X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Open Journal of the Communications Society |
| locations[0].source.host_organization | https://openalex.org/P4310316002 |
| locations[0].source.host_organization_name | IEEE Communications Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310316002, https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | IEEE Communications Society, Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Open Journal of the Communications Society |
| locations[0].landing_page_url | https://doi.org/10.1109/ojcoms.2025.3591535 |
| locations[1].id | pmh:oai:doaj.org/article:3f28ed43203e4b8c840cd44f21f79f6e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Open Journal of the Communications Society, Vol 6, Pp 6045-6065 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/3f28ed43203e4b8c840cd44f21f79f6e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5058796764 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7255-1085 |
| authorships[0].author.display_name | Md. Shirajum Munir |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5950314 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computing, Analytics, and Modeling, University of West Georgia, Carrollton, GA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I5950314 |
| authorships[0].institutions[0].ror | https://ror.org/01cqxk816 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5950314 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of West Georgia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Md Shirajum Munir |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computing, Analytics, and Modeling, University of West Georgia, Carrollton, GA, USA |
| authorships[1].author.id | https://openalex.org/A5094134501 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sravanthi Proddatoori |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I81365321 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Secure and Intelligent Critical Systems, Old Dominion University, Norfolk, VA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I81365321 |
| authorships[1].institutions[0].ror | https://ror.org/04zjtrb98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I81365321 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Old Dominion University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sravanthi Proddatoori |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Secure and Intelligent Critical Systems, Old Dominion University, Norfolk, VA, USA |
| authorships[2].author.id | https://openalex.org/A5094134502 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Manjushree Muralidhara |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I81365321 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Secure and Intelligent Critical Systems, Old Dominion University, Norfolk, VA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I81365321 |
| authorships[2].institutions[0].ror | https://ror.org/04zjtrb98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I81365321 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Old Dominion University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Manjushree Muralidhara |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Secure and Intelligent Critical Systems, Old Dominion University, Norfolk, VA, USA |
| authorships[3].author.id | https://openalex.org/A5062220824 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Trinidad Mario Dena |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5950314 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computing, Analytics, and Modeling, University of West Georgia, Carrollton, GA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I5950314 |
| authorships[3].institutions[0].ror | https://ror.org/01cqxk816 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5950314 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of West Georgia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Trinidad Mario Dena |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computing, Analytics, and Modeling, University of West Georgia, Carrollton, GA, USA |
| authorships[4].author.id | https://openalex.org/A5024108653 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2247-2458 |
| authorships[4].author.display_name | Walid Saad |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I859038795 |
| authorships[4].affiliations[0].raw_affiliation_string | Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I859038795 |
| authorships[4].institutions[0].ror | https://ror.org/02smfhw86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I859038795 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Virginia Tech |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Walid Saad |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA |
| authorships[5].author.id | https://openalex.org/A5063667378 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6606-5822 |
| authorships[5].author.display_name | Zhu Han |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I44461941 |
| authorships[5].affiliations[0].raw_affiliation_string | Electrical and Computer Engineering, University of Houston, Houston, TX, USA |
| authorships[5].institutions[0].id | https://openalex.org/I44461941 |
| authorships[5].institutions[0].ror | https://ror.org/048sx0r50 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I44461941 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Houston |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhu Han |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Electrical and Computer Engineering, University of Houston, Houston, TX, USA |
| authorships[6].author.id | https://openalex.org/A5052787847 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8789-0610 |
| authorships[6].author.display_name | Sachin Shetty |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I81365321 |
| authorships[6].affiliations[0].raw_affiliation_string | Center for Secure and Intelligent Critical Systems, Old Dominion University, Norfolk, VA, USA |
| authorships[6].institutions[0].id | https://openalex.org/I81365321 |
| authorships[6].institutions[0].ror | https://ror.org/04zjtrb98 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I81365321 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Old Dominion University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Sachin Shetty |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Center for Secure and Intelligent Critical Systems, Old Dominion University, Norfolk, VA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/ojcoms.2025.3591535 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Trust-By-Learning Framework for Secure 6G Wireless Networks Under Native Generative AI Attacks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11504 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9825999736785889 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Advanced Authentication Protocols Security |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2380075625, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/ojcoms.2025.3591535 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202420 |
| best_oa_location.source.issn | 2644-125X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2644-125X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Open Journal of the Communications Society |
| best_oa_location.source.host_organization | https://openalex.org/P4310316002 |
| best_oa_location.source.host_organization_name | IEEE Communications Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310316002, https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | IEEE Communications Society, Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Open Journal of the Communications Society |
| best_oa_location.landing_page_url | https://doi.org/10.1109/ojcoms.2025.3591535 |
| primary_location.id | doi:10.1109/ojcoms.2025.3591535 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202420 |
| primary_location.source.issn | 2644-125X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2644-125X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Open Journal of the Communications Society |
| primary_location.source.host_organization | https://openalex.org/P4310316002 |
| primary_location.source.host_organization_name | IEEE Communications Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310316002, https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | IEEE Communications Society, Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Open Journal of the Communications Society |
| primary_location.landing_page_url | https://doi.org/10.1109/ojcoms.2025.3591535 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4411949529, https://openalex.org/W4392026544, https://openalex.org/W4408520711, https://openalex.org/W3161594686, https://openalex.org/W4391305431, https://openalex.org/W4391547794, https://openalex.org/W4391428204, https://openalex.org/W4392847142, https://openalex.org/W4392796562, https://openalex.org/W4402156521, https://openalex.org/W3144404977, https://openalex.org/W2969519626, https://openalex.org/W4382618630, https://openalex.org/W4387245356, https://openalex.org/W4392523536, https://openalex.org/W6856054706, https://openalex.org/W4401509292, https://openalex.org/W3046449146, https://openalex.org/W4408100192, https://openalex.org/W4410030527, https://openalex.org/W4410341203, https://openalex.org/W4399525892, https://openalex.org/W4299581060, https://openalex.org/W1982821497, https://openalex.org/W3017194848, https://openalex.org/W4385695892, https://openalex.org/W4301347335, https://openalex.org/W2041004593, https://openalex.org/W2084924291, https://openalex.org/W6631190155, https://openalex.org/W317957491, https://openalex.org/W3187564029, https://openalex.org/W3007087231, https://openalex.org/W3009388141 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 88, 97, 114, 140, 157, 174, 202, 282 |
| abstract_inverted_index.1) | 156 |
| abstract_inverted_index.2) | 173 |
| abstract_inverted_index.3) | 201 |
| abstract_inverted_index.AI | 14 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.as | 119, 229 |
| abstract_inverted_index.be | 43 |
| abstract_inverted_index.by | 86, 112, 215, 280, 318 |
| abstract_inverted_index.in | 19, 34, 70, 92, 128, 167, 254, 304, 308 |
| abstract_inverted_index.is | 101, 145, 180 |
| abstract_inverted_index.of | 62, 117, 136, 153, 187, 190, 259, 285 |
| abstract_inverted_index.on | 313 |
| abstract_inverted_index.to | 11, 65, 103, 132, 182, 193, 242 |
| abstract_inverted_index.TBL | 149, 273, 300 |
| abstract_inverted_index.The | 147, 271 |
| abstract_inverted_index.and | 24, 32, 41, 54, 121, 171, 200, 237, 262, 267, 288, 293, 316, 322 |
| abstract_inverted_index.are | 84 |
| abstract_inverted_index.can | 42, 162, 210 |
| abstract_inverted_index.due | 10 |
| abstract_inverted_index.for | 197, 264, 290 |
| abstract_inverted_index.new | 115 |
| abstract_inverted_index.the | 21, 25, 46, 60, 93, 134, 137, 184, 195, 212, 249, 298, 306 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.both | 20 |
| abstract_inverted_index.core | 26 |
| abstract_inverted_index.data | 52 |
| abstract_inverted_index.have | 239 |
| abstract_inverted_index.pose | 37 |
| abstract_inverted_index.root | 79, 110, 185, 320 |
| abstract_inverted_index.show | 247 |
| abstract_inverted_index.such | 228 |
| abstract_inverted_index.that | 161, 179, 209, 224, 248 |
| abstract_inverted_index.them | 123 |
| abstract_inverted_index.unit | 23 |
| abstract_inverted_index.will | 7 |
| abstract_inverted_index.work | 58 |
| abstract_inverted_index.(TBL) | 143 |
| abstract_inverted_index.0.892 | 289 |
| abstract_inverted_index.GenAI | 48, 64, 159, 226 |
| abstract_inverted_index.Then, | 81 |
| abstract_inverted_index.cause | 111, 186 |
| abstract_inverted_index.joint | 98 |
| abstract_inverted_index.novel | 67, 141 |
| abstract_inverted_index.radio | 22 |
| abstract_inverted_index.score | 284 |
| abstract_inverted_index.shows | 302 |
| abstract_inverted_index.their | 75, 109 |
| abstract_inverted_index.those | 191 |
| abstract_inverted_index.three | 154 |
| abstract_inverted_index.trust | 196, 283, 307 |
| abstract_inverted_index.which | 50 |
| abstract_inverted_index.while | 73 |
| abstract_inverted_index.(GAN), | 233 |
| abstract_inverted_index.(VAE), | 236 |
| abstract_inverted_index.0.922, | 287 |
| abstract_inverted_index.0.972, | 286 |
| abstract_inverted_index.First, | 96 |
| abstract_inverted_index.Markov | 204 |
| abstract_inverted_index.attack | 278 |
| abstract_inverted_index.become | 8 |
| abstract_inverted_index.better | 253 |
| abstract_inverted_index.causes | 321 |
| abstract_inverted_index.create | 66 |
| abstract_inverted_index.design | 36 |
| abstract_inverted_index.impact | 76 |
| abstract_inverted_index.native | 12, 47, 63, 158, 225 |
| abstract_inverted_index.rates. | 324 |
| abstract_inverted_index.Amazon, | 265, 291 |
| abstract_inverted_index.Netflix | 294 |
| abstract_inverted_index.Process | 206 |
| abstract_inverted_index.Results | 246 |
| abstract_inverted_index.Second, | 131 |
| abstract_inverted_index.address | 133 |
| abstract_inverted_index.attacks | 18, 69, 83, 166, 192, 214, 257, 312 |
| abstract_inverted_index.enforce | 243 |
| abstract_inverted_index.further | 198 |
| abstract_inverted_index.measure | 116 |
| abstract_inverted_index.metrics | 33, 170, 317 |
| abstract_inverted_index.network | 30, 232, 314 |
| abstract_inverted_index.problem | 100 |
| abstract_inverted_index.service | 90, 126, 218 |
| abstract_inverted_index.through | 45, 77, 124 |
| abstract_inverted_index.Decision | 205 |
| abstract_inverted_index.Download | 268 |
| abstract_inverted_index.Finally, | 297 |
| abstract_inverted_index.Netflix, | 266 |
| abstract_inverted_index.analysis | 222 |
| abstract_inverted_index.attacks, | 107 |
| abstract_inverted_index.attacks. | 245 |
| abstract_inverted_index.consists | 152 |
| abstract_inverted_index.decision | 99 |
| abstract_inverted_index.defining | 113 |
| abstract_inverted_index.detected | 82 |
| abstract_inverted_index.efficacy | 303 |
| abstract_inverted_index.evidence | 176 |
| abstract_inverted_index.generate | 104 |
| abstract_inverted_index.learning | 207 |
| abstract_inverted_index.methods, | 227 |
| abstract_inverted_index.mitigate | 122, 211 |
| abstract_inverted_index.network. | 27, 95 |
| abstract_inverted_index.networks | 6 |
| abstract_inverted_index.performs | 251 |
| abstract_inverted_index.problem, | 139 |
| abstract_inverted_index.proposed | 148, 272, 299 |
| abstract_inverted_index.quantify | 194 |
| abstract_inverted_index.wireless | 5, 71, 94, 129, 168 |
| abstract_inverted_index.<tex-math | 2 |
| abstract_inverted_index.Download, | 292 |
| abstract_inverted_index.Extensive | 220 |
| abstract_inverted_index.achieving | 281 |
| abstract_inverted_index.analysis. | 80 |
| abstract_inverted_index.developed | 181 |
| abstract_inverted_index.enforcing | 216 |
| abstract_inverted_index.framework | 144, 150, 208, 274, 301 |
| abstract_inverted_index.leverages | 51 |
| abstract_inverted_index.mechanism | 160, 178 |
| abstract_inverted_index.mitigated | 85 |
| abstract_inverted_index.networks, | 72 |
| abstract_inverted_index.networks. | 130 |
| abstract_inverted_index.penetrate | 163 |
| abstract_inverted_index.poisoning | 17, 68, 106, 165, 244, 256, 311 |
| abstract_inverted_index.primarily | 151 |
| abstract_inverted_index.services, | 269, 295 |
| abstract_inverted_index.theoretic | 177 |
| abstract_inverted_index.uncertain | 39 |
| abstract_inverted_index.95% | 263 |
| abstract_inverted_index.capability | 241 |
| abstract_inverted_index.challenges | 135 |
| abstract_inverted_index.conditions | 40 |
| abstract_inverted_index.developed. | 146 |
| abstract_inverted_index.developing | 87 |
| abstract_inverted_index.formulated | 102, 138 |
| abstract_inverted_index.generating | 255 |
| abstract_inverted_index.generative | 13, 230 |
| abstract_inverted_index.inherently | 188 |
| abstract_inverted_index.mechanism, | 49 |
| abstract_inverted_index.mitigating | 323 |
| abstract_inverted_index.parameters | 31, 315 |
| abstract_inverted_index.replicates | 276 |
| abstract_inverted_index.understand | 108, 183 |
| abstract_inverted_index.vulnerable | 9 |
| abstract_inverted_index.adversarial | 231 |
| abstract_inverted_index.aggregation | 91, 127 |
| abstract_inverted_index.autoencoder | 235, 238, 250 |
| abstract_inverted_index.components: | 155 |
| abstract_inverted_index.compromised | 44 |
| abstract_inverted_index.cross-layer | 35 |
| abstract_inverted_index.effectively | 275 |
| abstract_inverted_index.intelligent | 16, 105, 164, 213, 277, 310 |
| abstract_inverted_index.mitigation; | 199 |
| abstract_inverted_index.parameters; | 172 |
| abstract_inverted_index.particular, | 29 |
| abstract_inverted_index.quantifying | 319 |
| abstract_inverted_index.significant | 240 |
| abstract_inverted_index.trustworthy | 89, 125, 217 |
| abstract_inverted_index.uncertainty | 118, 189 |
| abstract_inverted_index.variational | 234 |
| abstract_inverted_index.GenAI-driven | 309 |
| abstract_inverted_index.aggregation. | 219 |
| abstract_inverted_index.augmentation | 53 |
| abstract_inverted_index.capabilities | 61, 258 |
| abstract_inverted_index.demonstrates | 223 |
| abstract_inverted_index.dependencies | 279 |
| abstract_inverted_index.experimental | 221 |
| abstract_inverted_index.investigates | 59 |
| abstract_inverted_index.97.4%, | 261 |
| abstract_inverted_index.98.2%, | 260 |
| abstract_inverted_index.capabilities. | 56 |
| abstract_inverted_index.fundamentally | 38 |
| abstract_inverted_index.investigating | 74 |
| abstract_inverted_index.plausibility, | 120 |
| abstract_inverted_index.respectively. | 270, 296 |
| abstract_inverted_index.significantly | 252 |
| abstract_inverted_index.understanding | 305 |
| abstract_inverted_index.(GenAI)-driven | 15 |
| abstract_inverted_index.reconstruction | 55 |
| abstract_inverted_index.<inline-formula> | 1 |
| abstract_inverted_index.Sixth-generation | 0 |
| abstract_inverted_index.networks’ | 169 |
| abstract_inverted_index.Trust-By-Learning | 142 |
| abstract_inverted_index.uncertainty-informed | 78 |
| abstract_inverted_index.Dempster-Shafer-based | 175 |
| abstract_inverted_index.notation="LaTeX">$(6G)$ | 3 |
| abstract_inverted_index.meta-reinforcement-based | 203 |
| abstract_inverted_index.</tex-math></inline-formula> | 4 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.34764022 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |