A Trustable LSTM-Autoencoder Network for Cyberbullying Detection on Social Media Using Synthetic Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.09722
Social media cyberbullying has a detrimental effect on human life. As online social networking grows daily, the amount of hate speech also increases. Such terrible content can cause depression and actions related to suicide. This paper proposes a trustable LSTM-Autoencoder Network for cyberbullying detection on social media using synthetic data. We have demonstrated a cutting-edge method to address data availability difficulties by producing machine-translated data. However, several languages such as Hindi and Bangla still lack adequate investigations due to a lack of datasets. We carried out experimental identification of aggressive comments on Hindi, Bangla, and English datasets using the proposed model and traditional models, including Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), LSTM-Autoencoder, Word2vec, Bidirectional Encoder Representations from Transformers (BERT), and Generative Pre-trained Transformer 2 (GPT-2) models. We employed evaluation metrics such as f1-score, accuracy, precision, and recall to assess the models performance. Our proposed model outperformed all the models on all datasets, achieving the highest accuracy of 95%. Our model achieves state-of-the-art results among all the previous works on the dataset we used in this paper.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.09722
- https://arxiv.org/pdf/2308.09722
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386080713
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386080713Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.09722Digital Object Identifier
- Title
-
A Trustable LSTM-Autoencoder Network for Cyberbullying Detection on Social Media Using Synthetic DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-15Full publication date if available
- Authors
-
Mst Shapna Akter, Hossain Shahriar, Alfredo CuzzocreaList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.09722Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.09722Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.09722Direct OA link when available
- Concepts
-
Autoencoder, Computer science, Social media, Transformer, Artificial intelligence, Hindi, Word2vec, Bengali, Recall, Encoder, Machine learning, Long short term memory, Deep learning, Speech recognition, F1 score, Natural language processing, Recurrent neural network, Artificial neural network, Psychology, World Wide Web, Engineering, Electrical engineering, Embedding, Cognitive psychology, Voltage, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386080713 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.09722 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.09722 |
| ids.openalex | https://openalex.org/W4386080713 |
| fwci | |
| type | preprint |
| title | A Trustable LSTM-Autoencoder Network for Cyberbullying Detection on Social Media Using Synthetic Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12262 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9970999956130981 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Hate Speech and Cyberbullying Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9321568012237549 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7448654174804688 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C518677369 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6925254464149475 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[2].display_name | Social media |
| concepts[3].id | https://openalex.org/C66322947 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6466637849807739 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[3].display_name | Transformer |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6158238649368286 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C519982507 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6056917905807495 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1568 |
| concepts[5].display_name | Hindi |
| concepts[6].id | https://openalex.org/C2776461190 |
| concepts[6].level | 3 |
| concepts[6].score | 0.600646436214447 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q22673982 |
| concepts[6].display_name | Word2vec |
| concepts[7].id | https://openalex.org/C19235068 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5887496471405029 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9610 |
| concepts[7].display_name | Bengali |
| concepts[8].id | https://openalex.org/C100660578 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5590723752975464 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q18733 |
| concepts[8].display_name | Recall |
| concepts[9].id | https://openalex.org/C118505674 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5414964556694031 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[9].display_name | Encoder |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.5392528772354126 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C133488467 |
| concepts[11].level | 4 |
| concepts[11].score | 0.5156944394111633 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6673524 |
| concepts[11].display_name | Long short term memory |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.5086820721626282 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C28490314 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4260256588459015 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[13].display_name | Speech recognition |
| concepts[14].id | https://openalex.org/C148524875 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4170651137828827 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q6975395 |
| concepts[14].display_name | F1 score |
| concepts[15].id | https://openalex.org/C204321447 |
| concepts[15].level | 1 |
| concepts[15].score | 0.40159040689468384 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[15].display_name | Natural language processing |
| concepts[16].id | https://openalex.org/C147168706 |
| concepts[16].level | 3 |
| concepts[16].score | 0.29145193099975586 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[16].display_name | Recurrent neural network |
| concepts[17].id | https://openalex.org/C50644808 |
| concepts[17].level | 2 |
| concepts[17].score | 0.28209805488586426 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[17].display_name | Artificial neural network |
| concepts[18].id | https://openalex.org/C15744967 |
| concepts[18].level | 0 |
| concepts[18].score | 0.08553484082221985 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[18].display_name | Psychology |
| concepts[19].id | https://openalex.org/C136764020 |
| concepts[19].level | 1 |
| concepts[19].score | 0.08478471636772156 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[19].display_name | World Wide Web |
| concepts[20].id | https://openalex.org/C127413603 |
| concepts[20].level | 0 |
| concepts[20].score | 0.08120083808898926 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[20].display_name | Engineering |
| concepts[21].id | https://openalex.org/C119599485 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[21].display_name | Electrical engineering |
| concepts[22].id | https://openalex.org/C41608201 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[22].display_name | Embedding |
| concepts[23].id | https://openalex.org/C180747234 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[23].display_name | Cognitive psychology |
| concepts[24].id | https://openalex.org/C165801399 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[24].display_name | Voltage |
| concepts[25].id | https://openalex.org/C111919701 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[25].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.9321568012237549 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7448654174804688 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/social-media |
| keywords[2].score | 0.6925254464149475 |
| keywords[2].display_name | Social media |
| keywords[3].id | https://openalex.org/keywords/transformer |
| keywords[3].score | 0.6466637849807739 |
| keywords[3].display_name | Transformer |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6158238649368286 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/hindi |
| keywords[5].score | 0.6056917905807495 |
| keywords[5].display_name | Hindi |
| keywords[6].id | https://openalex.org/keywords/word2vec |
| keywords[6].score | 0.600646436214447 |
| keywords[6].display_name | Word2vec |
| keywords[7].id | https://openalex.org/keywords/bengali |
| keywords[7].score | 0.5887496471405029 |
| keywords[7].display_name | Bengali |
| keywords[8].id | https://openalex.org/keywords/recall |
| keywords[8].score | 0.5590723752975464 |
| keywords[8].display_name | Recall |
| keywords[9].id | https://openalex.org/keywords/encoder |
| keywords[9].score | 0.5414964556694031 |
| keywords[9].display_name | Encoder |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.5392528772354126 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/long-short-term-memory |
| keywords[11].score | 0.5156944394111633 |
| keywords[11].display_name | Long short term memory |
| keywords[12].id | https://openalex.org/keywords/deep-learning |
| keywords[12].score | 0.5086820721626282 |
| keywords[12].display_name | Deep learning |
| keywords[13].id | https://openalex.org/keywords/speech-recognition |
| keywords[13].score | 0.4260256588459015 |
| keywords[13].display_name | Speech recognition |
| keywords[14].id | https://openalex.org/keywords/f1-score |
| keywords[14].score | 0.4170651137828827 |
| keywords[14].display_name | F1 score |
| keywords[15].id | https://openalex.org/keywords/natural-language-processing |
| keywords[15].score | 0.40159040689468384 |
| keywords[15].display_name | Natural language processing |
| keywords[16].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[16].score | 0.29145193099975586 |
| keywords[16].display_name | Recurrent neural network |
| keywords[17].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[17].score | 0.28209805488586426 |
| keywords[17].display_name | Artificial neural network |
| keywords[18].id | https://openalex.org/keywords/psychology |
| keywords[18].score | 0.08553484082221985 |
| keywords[18].display_name | Psychology |
| keywords[19].id | https://openalex.org/keywords/world-wide-web |
| keywords[19].score | 0.08478471636772156 |
| keywords[19].display_name | World Wide Web |
| keywords[20].id | https://openalex.org/keywords/engineering |
| keywords[20].score | 0.08120083808898926 |
| keywords[20].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.09722 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.09722 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.09722 |
| locations[1].id | doi:10.48550/arxiv.2308.09722 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.09722 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015055011 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9859-6265 |
| authorships[0].author.display_name | Mst Shapna Akter |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Akter, Mst Shapna |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052820694 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1021-7986 |
| authorships[1].author.display_name | Hossain Shahriar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shahriar, Hossain |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5053225136 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7104-6415 |
| authorships[2].author.display_name | Alfredo Cuzzocrea |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Cuzzocrea, Alfredo |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.09722 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-23T00:00:00 |
| display_name | A Trustable LSTM-Autoencoder Network for Cyberbullying Detection on Social Media Using Synthetic Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12262 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9970999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Hate Speech and Cyberbullying Detection |
| related_works | https://openalex.org/W2611554154, https://openalex.org/W2913711322, https://openalex.org/W2402354285, https://openalex.org/W2482488296, https://openalex.org/W2251015319, https://openalex.org/W10843010, https://openalex.org/W2600299847, https://openalex.org/W4392234849, https://openalex.org/W2072916690, https://openalex.org/W4391800903 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.09722 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.09722 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.09722 |
| primary_location.id | pmh:oai:arXiv.org:2308.09722 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.09722 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.09722 |
| publication_date | 2023-08-15 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 126 |
| abstract_inverted_index.a | 4, 37, 53, 79 |
| abstract_inverted_index.As | 10 |
| abstract_inverted_index.We | 50, 83, 129 |
| abstract_inverted_index.as | 69, 134 |
| abstract_inverted_index.by | 61 |
| abstract_inverted_index.in | 176 |
| abstract_inverted_index.of | 18, 81, 88, 159 |
| abstract_inverted_index.on | 7, 44, 91, 152, 171 |
| abstract_inverted_index.to | 32, 56, 78, 140 |
| abstract_inverted_index.we | 174 |
| abstract_inverted_index.Our | 145, 161 |
| abstract_inverted_index.all | 149, 153, 167 |
| abstract_inverted_index.and | 29, 71, 94, 101, 122, 138 |
| abstract_inverted_index.can | 26 |
| abstract_inverted_index.due | 77 |
| abstract_inverted_index.for | 41 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.out | 85 |
| abstract_inverted_index.the | 16, 98, 142, 150, 156, 168, 172 |
| abstract_inverted_index.95%. | 160 |
| abstract_inverted_index.Long | 105, 110 |
| abstract_inverted_index.Such | 23 |
| abstract_inverted_index.This | 34 |
| abstract_inverted_index.also | 21 |
| abstract_inverted_index.data | 58 |
| abstract_inverted_index.from | 119 |
| abstract_inverted_index.hate | 19 |
| abstract_inverted_index.have | 51 |
| abstract_inverted_index.lack | 74, 80 |
| abstract_inverted_index.such | 68, 133 |
| abstract_inverted_index.this | 177 |
| abstract_inverted_index.used | 175 |
| abstract_inverted_index.Hindi | 70 |
| abstract_inverted_index.among | 166 |
| abstract_inverted_index.cause | 27 |
| abstract_inverted_index.data. | 49, 64 |
| abstract_inverted_index.grows | 14 |
| abstract_inverted_index.human | 8 |
| abstract_inverted_index.life. | 9 |
| abstract_inverted_index.media | 1, 46 |
| abstract_inverted_index.model | 100, 147, 162 |
| abstract_inverted_index.paper | 35 |
| abstract_inverted_index.still | 73 |
| abstract_inverted_index.using | 47, 97 |
| abstract_inverted_index.works | 170 |
| abstract_inverted_index.Bangla | 72 |
| abstract_inverted_index.Hindi, | 92 |
| abstract_inverted_index.Memory | 107, 112 |
| abstract_inverted_index.Social | 0 |
| abstract_inverted_index.amount | 17 |
| abstract_inverted_index.assess | 141 |
| abstract_inverted_index.daily, | 15 |
| abstract_inverted_index.effect | 6 |
| abstract_inverted_index.method | 55 |
| abstract_inverted_index.models | 143, 151 |
| abstract_inverted_index.online | 11 |
| abstract_inverted_index.paper. | 178 |
| abstract_inverted_index.recall | 139 |
| abstract_inverted_index.social | 12, 45 |
| abstract_inverted_index.speech | 20 |
| abstract_inverted_index.(BERT), | 121 |
| abstract_inverted_index.(GPT-2) | 127 |
| abstract_inverted_index.(LSTM), | 108 |
| abstract_inverted_index.Bangla, | 93 |
| abstract_inverted_index.Encoder | 117 |
| abstract_inverted_index.English | 95 |
| abstract_inverted_index.Network | 40 |
| abstract_inverted_index.actions | 30 |
| abstract_inverted_index.address | 57 |
| abstract_inverted_index.carried | 84 |
| abstract_inverted_index.content | 25 |
| abstract_inverted_index.dataset | 173 |
| abstract_inverted_index.highest | 157 |
| abstract_inverted_index.metrics | 132 |
| abstract_inverted_index.models, | 103 |
| abstract_inverted_index.models. | 128 |
| abstract_inverted_index.related | 31 |
| abstract_inverted_index.results | 165 |
| abstract_inverted_index.several | 66 |
| abstract_inverted_index.However, | 65 |
| abstract_inverted_index.accuracy | 158 |
| abstract_inverted_index.achieves | 163 |
| abstract_inverted_index.adequate | 75 |
| abstract_inverted_index.comments | 90 |
| abstract_inverted_index.datasets | 96 |
| abstract_inverted_index.employed | 130 |
| abstract_inverted_index.previous | 169 |
| abstract_inverted_index.proposed | 99, 146 |
| abstract_inverted_index.proposes | 36 |
| abstract_inverted_index.suicide. | 33 |
| abstract_inverted_index.terrible | 24 |
| abstract_inverted_index.(BiLSTM), | 113 |
| abstract_inverted_index.Word2vec, | 115 |
| abstract_inverted_index.accuracy, | 136 |
| abstract_inverted_index.achieving | 155 |
| abstract_inverted_index.datasets, | 154 |
| abstract_inverted_index.datasets. | 82 |
| abstract_inverted_index.detection | 43 |
| abstract_inverted_index.f1-score, | 135 |
| abstract_inverted_index.including | 104 |
| abstract_inverted_index.languages | 67 |
| abstract_inverted_index.producing | 62 |
| abstract_inverted_index.synthetic | 48 |
| abstract_inverted_index.trustable | 38 |
| abstract_inverted_index.Generative | 123 |
| abstract_inverted_index.Short-Term | 106, 111 |
| abstract_inverted_index.aggressive | 89 |
| abstract_inverted_index.depression | 28 |
| abstract_inverted_index.evaluation | 131 |
| abstract_inverted_index.increases. | 22 |
| abstract_inverted_index.networking | 13 |
| abstract_inverted_index.precision, | 137 |
| abstract_inverted_index.Pre-trained | 124 |
| abstract_inverted_index.Transformer | 125 |
| abstract_inverted_index.detrimental | 5 |
| abstract_inverted_index.traditional | 102 |
| abstract_inverted_index.Transformers | 120 |
| abstract_inverted_index.availability | 59 |
| abstract_inverted_index.cutting-edge | 54 |
| abstract_inverted_index.demonstrated | 52 |
| abstract_inverted_index.difficulties | 60 |
| abstract_inverted_index.experimental | 86 |
| abstract_inverted_index.outperformed | 148 |
| abstract_inverted_index.performance. | 144 |
| abstract_inverted_index.Bidirectional | 109, 116 |
| abstract_inverted_index.cyberbullying | 2, 42 |
| abstract_inverted_index.identification | 87 |
| abstract_inverted_index.investigations | 76 |
| abstract_inverted_index.Representations | 118 |
| abstract_inverted_index.LSTM-Autoencoder | 39 |
| abstract_inverted_index.state-of-the-art | 164 |
| abstract_inverted_index.LSTM-Autoencoder, | 114 |
| abstract_inverted_index.machine-translated | 63 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |