A Turbo-Inference Strategy for Object Detection and Instance Segmentation Article Swipe
Zhen Zhao
,
Gang Zhang
,
Xiaolin Hu
,
Liang Tang
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5226932
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5226932
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5226932
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409664431
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409664431Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5226932Digital Object Identifier
- Title
-
A Turbo-Inference Strategy for Object Detection and Instance SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Zhen Zhao, Gang Zhang, Xiaolin Hu, Liang TangList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5226932Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5226932Direct OA link when available
- Concepts
-
Inference, Segmentation, Artificial intelligence, Computer science, Turbo, Pattern recognition (psychology), Object (grammar), Engineering, Automotive engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409664431 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5226932 |
| ids.doi | https://doi.org/10.2139/ssrn.5226932 |
| ids.openalex | https://openalex.org/W4409664431 |
| fwci | 0.0 |
| type | preprint |
| title | A Turbo-Inference Strategy for Object Detection and Instance Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8068000078201294 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7487276196479797 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6971862316131592 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6263201236724854 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5771933197975159 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2776240298 |
| concepts[4].level | 2 |
| concepts[4].score | 0.528008222579956 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1138513 |
| concepts[4].display_name | Turbo |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5160403251647949 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C2781238097 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46810388565063477 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[6].display_name | Object (grammar) |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.09804293513298035 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C171146098 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[8].display_name | Automotive engineering |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.7487276196479797 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6971862316131592 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6263201236724854 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5771933197975159 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/turbo |
| keywords[4].score | 0.528008222579956 |
| keywords[4].display_name | Turbo |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5160403251647949 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/object |
| keywords[6].score | 0.46810388565063477 |
| keywords[6].display_name | Object (grammar) |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.09804293513298035 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5226932 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5226932 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5072694516 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0796-4078 |
| authorships[0].author.display_name | Zhen Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhen Zhao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100363247 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5337-3164 |
| authorships[1].author.display_name | Gang Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gang Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102014939 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xiaolin Hu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaolin Hu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5080853070 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9079-2942 |
| authorships[3].author.display_name | Liang Tang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Liang Tang |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5226932 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Turbo-Inference Strategy for Object Detection and Instance Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8068000078201294 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2055243143, https://openalex.org/W2367159233, https://openalex.org/W4379231730, https://openalex.org/W1986418932, https://openalex.org/W2357796999, https://openalex.org/W4321636575, https://openalex.org/W2741131631, https://openalex.org/W2045526782, https://openalex.org/W4389858081, https://openalex.org/W2737719445 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5226932 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5226932 |
| primary_location.id | doi:10.2139/ssrn.5226932 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5226932 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.17173209 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |