A Turing-based bimodal population code can specify Cephalopod chromatic skin displays Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2205.11500
The skin of a cephalopod forms a dazzling array of patterns made by chromatophores, elastic sacs of pigment that can be expanded by muscles to reveal their color. Tens of thousands of these chromatophores can work together to generate a stable display of stripes, spots, mottled grainy camouflage, or dynamic oscillations and traveling waves of activation. How does a neuromuscular system organize the coactivation of thousands of degrees of freedom through simple central commands? We provide a minimally-complex physiologically-plausible mathematical model, using Turing's morphogenetic equations, that can generate the array of twelve static and four dynamic types of skin displays seen in several cephalopod species. These equations specify how muscle cells on the skin need to locally interact for the global chromatic patterns to be formed. We also demonstrate a link between Turing neural computations and the asynchronous type of computing that has been extensively demonstrated in brain systems: population coding, using bimodal codes, with the relative heights of the modes specifying the kind of global pattern generated. Since Cephalopod skins are a "visible neural net", we believe that the computational principles uncovered through their study may have wider implications for the functioning of other neural systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2205.11500
- https://arxiv.org/pdf/2205.11500
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281478619
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281478619Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2205.11500Digital Object Identifier
- Title
-
A Turing-based bimodal population code can specify Cephalopod chromatic skin displaysWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-23Full publication date if available
- Authors
-
Khalil Iskarous, Jennifer A. Mather, Jean AlupayList of authors in order
- Landing page
-
https://arxiv.org/abs/2205.11500Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2205.11500Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.11500Direct OA link when available
- Concepts
-
Computer science, Neural coding, Population, Cephalopod, Turing, Chromatic scale, Camouflage, Biological system, Theoretical computer science, Artificial intelligence, Physics, Biology, Acoustics, Ecology, Programming language, Sociology, DemographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281478619 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2205.11500 |
| ids.doi | https://doi.org/10.48550/arxiv.2205.11500 |
| ids.openalex | https://openalex.org/W4281478619 |
| fwci | |
| type | preprint |
| title | A Turing-based bimodal population code can specify Cephalopod chromatic skin displays |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12596 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9954000115394592 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1105 |
| topics[0].subfield.display_name | Ecology, Evolution, Behavior and Systematics |
| topics[0].display_name | Cephalopods and Marine Biology |
| topics[1].id | https://openalex.org/T10423 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9929999709129333 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2804 |
| topics[1].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[1].display_name | Neurobiology and Insect Physiology Research |
| topics[2].id | https://openalex.org/T12236 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9890000224113464 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2804 |
| topics[2].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[2].display_name | Photoreceptor and optogenetics research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5992183089256287 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C77637269 |
| concepts[1].level | 2 |
| concepts[1].score | 0.49832940101623535 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7002051 |
| concepts[1].display_name | Neural coding |
| concepts[2].id | https://openalex.org/C2908647359 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49055594205856323 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[2].display_name | Population |
| concepts[3].id | https://openalex.org/C2780438927 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48522281646728516 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q128257 |
| concepts[3].display_name | Cephalopod |
| concepts[4].id | https://openalex.org/C9870796 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4459632933139801 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q490481 |
| concepts[4].display_name | Turing |
| concepts[5].id | https://openalex.org/C196956537 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4411185383796692 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q202021 |
| concepts[5].display_name | Chromatic scale |
| concepts[6].id | https://openalex.org/C2776196576 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4207667112350464 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q196113 |
| concepts[6].display_name | Camouflage |
| concepts[7].id | https://openalex.org/C186060115 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3792376220226288 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[7].display_name | Biological system |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34027087688446045 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2657775580883026 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.23438680171966553 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.20575180649757385 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C24890656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12065121531486511 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[12].display_name | Acoustics |
| concepts[13].id | https://openalex.org/C18903297 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11091122031211853 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[13].display_name | Ecology |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C144024400 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[15].display_name | Sociology |
| concepts[16].id | https://openalex.org/C149923435 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[16].display_name | Demography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5992183089256287 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/neural-coding |
| keywords[1].score | 0.49832940101623535 |
| keywords[1].display_name | Neural coding |
| keywords[2].id | https://openalex.org/keywords/population |
| keywords[2].score | 0.49055594205856323 |
| keywords[2].display_name | Population |
| keywords[3].id | https://openalex.org/keywords/cephalopod |
| keywords[3].score | 0.48522281646728516 |
| keywords[3].display_name | Cephalopod |
| keywords[4].id | https://openalex.org/keywords/turing |
| keywords[4].score | 0.4459632933139801 |
| keywords[4].display_name | Turing |
| keywords[5].id | https://openalex.org/keywords/chromatic-scale |
| keywords[5].score | 0.4411185383796692 |
| keywords[5].display_name | Chromatic scale |
| keywords[6].id | https://openalex.org/keywords/camouflage |
| keywords[6].score | 0.4207667112350464 |
| keywords[6].display_name | Camouflage |
| keywords[7].id | https://openalex.org/keywords/biological-system |
| keywords[7].score | 0.3792376220226288 |
| keywords[7].display_name | Biological system |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.34027087688446045 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.2657775580883026 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.23438680171966553 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.20575180649757385 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/acoustics |
| keywords[12].score | 0.12065121531486511 |
| keywords[12].display_name | Acoustics |
| keywords[13].id | https://openalex.org/keywords/ecology |
| keywords[13].score | 0.11091122031211853 |
| keywords[13].display_name | Ecology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2205.11500 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2205.11500 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2205.11500 |
| locations[1].id | doi:10.48550/arxiv.2205.11500 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2205.11500 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5044515172 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3269-7343 |
| authorships[0].author.display_name | Khalil Iskarous |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Iskarous, Khalil |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067210347 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7009-1639 |
| authorships[1].author.display_name | Jennifer A. Mather |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mather, Jennifer |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5012116968 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8461-6176 |
| authorships[2].author.display_name | Jean Alupay |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Alupay, Jean |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.11500 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-26T00:00:00 |
| display_name | A Turing-based bimodal population code can specify Cephalopod chromatic skin displays |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12596 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9954000115394592 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1105 |
| primary_topic.subfield.display_name | Ecology, Evolution, Behavior and Systematics |
| primary_topic.display_name | Cephalopods and Marine Biology |
| related_works | https://openalex.org/W2978048274, https://openalex.org/W2348329006, https://openalex.org/W2379031960, https://openalex.org/W2376458710, https://openalex.org/W2231217681, https://openalex.org/W2914759737, https://openalex.org/W2984158411, https://openalex.org/W3175996421, https://openalex.org/W4304974384, https://openalex.org/W2489896655 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.11500 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.11500 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.11500 |
| primary_location.id | pmh:oai:arXiv.org:2205.11500 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2205.11500 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2205.11500 |
| publication_date | 2022-05-23 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 6, 39, 58, 76, 129, 172 |
| abstract_inverted_index.We | 74, 126 |
| abstract_inverted_index.be | 20, 124 |
| abstract_inverted_index.by | 12, 22 |
| abstract_inverted_index.in | 101, 146 |
| abstract_inverted_index.of | 2, 9, 16, 29, 31, 42, 54, 64, 66, 68, 90, 97, 139, 158, 164, 193 |
| abstract_inverted_index.on | 111 |
| abstract_inverted_index.or | 48 |
| abstract_inverted_index.to | 24, 37, 115, 123 |
| abstract_inverted_index.we | 176 |
| abstract_inverted_index.How | 56 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 51, 93, 135 |
| abstract_inverted_index.are | 171 |
| abstract_inverted_index.can | 19, 34, 86 |
| abstract_inverted_index.for | 118, 190 |
| abstract_inverted_index.has | 142 |
| abstract_inverted_index.how | 108 |
| abstract_inverted_index.may | 186 |
| abstract_inverted_index.the | 62, 88, 112, 119, 136, 155, 159, 162, 179, 191 |
| abstract_inverted_index.Tens | 28 |
| abstract_inverted_index.also | 127 |
| abstract_inverted_index.been | 143 |
| abstract_inverted_index.does | 57 |
| abstract_inverted_index.four | 94 |
| abstract_inverted_index.have | 187 |
| abstract_inverted_index.kind | 163 |
| abstract_inverted_index.link | 130 |
| abstract_inverted_index.made | 11 |
| abstract_inverted_index.need | 114 |
| abstract_inverted_index.sacs | 15 |
| abstract_inverted_index.seen | 100 |
| abstract_inverted_index.skin | 1, 98, 113 |
| abstract_inverted_index.that | 18, 85, 141, 178 |
| abstract_inverted_index.type | 138 |
| abstract_inverted_index.with | 154 |
| abstract_inverted_index.work | 35 |
| abstract_inverted_index.Since | 168 |
| abstract_inverted_index.These | 105 |
| abstract_inverted_index.array | 8, 89 |
| abstract_inverted_index.brain | 147 |
| abstract_inverted_index.cells | 110 |
| abstract_inverted_index.forms | 5 |
| abstract_inverted_index.modes | 160 |
| abstract_inverted_index.net", | 175 |
| abstract_inverted_index.other | 194 |
| abstract_inverted_index.skins | 170 |
| abstract_inverted_index.study | 185 |
| abstract_inverted_index.their | 26, 184 |
| abstract_inverted_index.these | 32 |
| abstract_inverted_index.types | 96 |
| abstract_inverted_index.using | 81, 151 |
| abstract_inverted_index.waves | 53 |
| abstract_inverted_index.wider | 188 |
| abstract_inverted_index.Turing | 132 |
| abstract_inverted_index.codes, | 153 |
| abstract_inverted_index.color. | 27 |
| abstract_inverted_index.global | 120, 165 |
| abstract_inverted_index.grainy | 46 |
| abstract_inverted_index.model, | 80 |
| abstract_inverted_index.muscle | 109 |
| abstract_inverted_index.neural | 133, 174, 195 |
| abstract_inverted_index.reveal | 25 |
| abstract_inverted_index.simple | 71 |
| abstract_inverted_index.spots, | 44 |
| abstract_inverted_index.stable | 40 |
| abstract_inverted_index.static | 92 |
| abstract_inverted_index.system | 60 |
| abstract_inverted_index.twelve | 91 |
| abstract_inverted_index.believe | 177 |
| abstract_inverted_index.between | 131 |
| abstract_inverted_index.bimodal | 152 |
| abstract_inverted_index.central | 72 |
| abstract_inverted_index.coding, | 150 |
| abstract_inverted_index.degrees | 67 |
| abstract_inverted_index.display | 41 |
| abstract_inverted_index.dynamic | 49, 95 |
| abstract_inverted_index.elastic | 14 |
| abstract_inverted_index.formed. | 125 |
| abstract_inverted_index.freedom | 69 |
| abstract_inverted_index.heights | 157 |
| abstract_inverted_index.locally | 116 |
| abstract_inverted_index.mottled | 45 |
| abstract_inverted_index.muscles | 23 |
| abstract_inverted_index.pattern | 166 |
| abstract_inverted_index.pigment | 17 |
| abstract_inverted_index.provide | 75 |
| abstract_inverted_index.several | 102 |
| abstract_inverted_index.specify | 107 |
| abstract_inverted_index.through | 70, 183 |
| abstract_inverted_index."visible | 173 |
| abstract_inverted_index.Turing's | 82 |
| abstract_inverted_index.dazzling | 7 |
| abstract_inverted_index.displays | 99 |
| abstract_inverted_index.expanded | 21 |
| abstract_inverted_index.generate | 38, 87 |
| abstract_inverted_index.interact | 117 |
| abstract_inverted_index.organize | 61 |
| abstract_inverted_index.patterns | 10, 122 |
| abstract_inverted_index.relative | 156 |
| abstract_inverted_index.species. | 104 |
| abstract_inverted_index.stripes, | 43 |
| abstract_inverted_index.systems. | 196 |
| abstract_inverted_index.systems: | 148 |
| abstract_inverted_index.together | 36 |
| abstract_inverted_index.chromatic | 121 |
| abstract_inverted_index.commands? | 73 |
| abstract_inverted_index.computing | 140 |
| abstract_inverted_index.equations | 106 |
| abstract_inverted_index.thousands | 30, 65 |
| abstract_inverted_index.traveling | 52 |
| abstract_inverted_index.uncovered | 182 |
| abstract_inverted_index.Cephalopod | 169 |
| abstract_inverted_index.cephalopod | 4, 103 |
| abstract_inverted_index.equations, | 84 |
| abstract_inverted_index.generated. | 167 |
| abstract_inverted_index.population | 149 |
| abstract_inverted_index.principles | 181 |
| abstract_inverted_index.specifying | 161 |
| abstract_inverted_index.activation. | 55 |
| abstract_inverted_index.camouflage, | 47 |
| abstract_inverted_index.demonstrate | 128 |
| abstract_inverted_index.extensively | 144 |
| abstract_inverted_index.functioning | 192 |
| abstract_inverted_index.asynchronous | 137 |
| abstract_inverted_index.coactivation | 63 |
| abstract_inverted_index.computations | 134 |
| abstract_inverted_index.demonstrated | 145 |
| abstract_inverted_index.implications | 189 |
| abstract_inverted_index.mathematical | 79 |
| abstract_inverted_index.oscillations | 50 |
| abstract_inverted_index.computational | 180 |
| abstract_inverted_index.morphogenetic | 83 |
| abstract_inverted_index.neuromuscular | 59 |
| abstract_inverted_index.chromatophores | 33 |
| abstract_inverted_index.chromatophores, | 13 |
| abstract_inverted_index.minimally-complex | 77 |
| abstract_inverted_index.physiologically-plausible | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |