A Tutorial and Use Case Example of the eXtreme Gradient Boosting (XGBoost ) Artificial Intelligence Algorithm for Drug Development Applications
Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1111/cts.70172
Approaches to artificial intelligence and machine learning (AI/ML) continue to advance in the field of drug development. A sound understanding of the underlying concepts and guiding principles of AI/ML implementation is a prerequisite to identifying which AI/ML approach is most appropriate based on the context. This tutorial focuses on the concepts and implementation of the popular eXtreme gradient boosting (XGBoost) algorithm for classification and regression of simple clinical trial‐like datasets. Emphasis is placed on relating the underlying concepts to the code implementation. In doing so, the aim is for the reader to gain knowledge about the underlying algorithm and become better versed with how to implement the algorithm functions for relevant clinical drug development questions. In turn, this will provide practical ML experience which can be applied to algorithms and problems beyond the scope of this tutorial.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1111/cts.70172
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cts.70172
- OA Status
- gold
- Cited By
- 18
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408309490
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408309490Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/cts.70172Digital Object Identifier
- Title
-
A Tutorial and Use Case Example of the
eXtreme Gradient Boosting (XGBoost ) Artificial Intelligence Algorithm for Drug Development ApplicationsWork title - Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-01Full publication date if available
- Authors
-
Matthew Wiens, Alissa Verone‐Boyle, Nick Henscheid, Jagdeep T. Podichetty, Jackson BurtonList of authors in order
- Landing page
-
https://doi.org/10.1111/cts.70172Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cts.70172Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cts.70172Direct OA link when available
- Concepts
-
Computer science, Boosting (machine learning), Artificial intelligence, Machine learning, Algorithm, Scope (computer science), Field (mathematics), Drug development, Gradient boosting, Context (archaeology), Drug, Medicine, Mathematics, Biology, Pure mathematics, Random forest, Paleontology, Psychiatry, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 18Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408309490 |
|---|---|
| doi | https://doi.org/10.1111/cts.70172 |
| ids.doi | https://doi.org/10.1111/cts.70172 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40067353 |
| ids.openalex | https://openalex.org/W4408309490 |
| fwci | 90.33111775 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D000076722 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Drug Development |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000465 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Algorithms |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000069550 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Machine Learning |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D001185 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Artificial Intelligence |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D002986 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Clinical Trials as Topic |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000098404 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Boosting Machine Learning Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D000076722 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Drug Development |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000465 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Algorithms |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000069550 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Machine Learning |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D001185 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Artificial Intelligence |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D002986 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Clinical Trials as Topic |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000098404 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Boosting Machine Learning Algorithms |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D000076722 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Drug Development |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000465 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Algorithms |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000069550 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Machine Learning |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D001185 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Artificial Intelligence |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D002986 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Clinical Trials as Topic |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D000076722 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Drug Development |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000465 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Algorithms |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000069550 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Machine Learning |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D001185 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Artificial Intelligence |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D002986 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Clinical Trials as Topic |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000098404 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Boosting Machine Learning Algorithms |
| mesh[27].qualifier_ui | Q000379 |
| mesh[27].descriptor_ui | D000076722 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | methods |
| mesh[27].descriptor_name | Drug Development |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D006801 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Humans |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000465 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Algorithms |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000069550 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Machine Learning |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D001185 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Artificial Intelligence |
| mesh[32].qualifier_ui | Q000379 |
| mesh[32].descriptor_ui | D002986 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | methods |
| mesh[32].descriptor_name | Clinical Trials as Topic |
| type | article |
| title | A Tutorial and Use Case Example of the |
| biblio.issue | 3 |
| biblio.volume | 18 |
| biblio.last_page | e70172 |
| biblio.first_page | e70172 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9613999724388123 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| topics[2].id | https://openalex.org/T13937 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9121999740600586 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Genetics, Bioinformatics, and Biomedical Research |
| is_xpac | False |
| apc_list.value | 2750 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3300 |
| apc_paid.value | 2750 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3300 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7441989183425903 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C46686674 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6866739988327026 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[1].display_name | Boosting (machine learning) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6136174201965332 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6063557267189026 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5556654930114746 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C2778012447 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4852018654346466 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1034415 |
| concepts[5].display_name | Scope (computer science) |
| concepts[6].id | https://openalex.org/C9652623 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4699837267398834 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[6].display_name | Field (mathematics) |
| concepts[7].id | https://openalex.org/C64903051 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4662334620952606 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2198549 |
| concepts[7].display_name | Drug development |
| concepts[8].id | https://openalex.org/C70153297 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4614189565181732 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[8].display_name | Gradient boosting |
| concepts[9].id | https://openalex.org/C2779343474 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43703943490982056 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[9].display_name | Context (archaeology) |
| concepts[10].id | https://openalex.org/C2780035454 |
| concepts[10].level | 2 |
| concepts[10].score | 0.17216354608535767 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[10].display_name | Drug |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1137559711933136 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07987317442893982 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C202444582 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[14].display_name | Pure mathematics |
| concepts[15].id | https://openalex.org/C169258074 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[15].display_name | Random forest |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C118552586 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[17].display_name | Psychiatry |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7441989183425903 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/boosting |
| keywords[1].score | 0.6866739988327026 |
| keywords[1].display_name | Boosting (machine learning) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6136174201965332 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.6063557267189026 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.5556654930114746 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/scope |
| keywords[5].score | 0.4852018654346466 |
| keywords[5].display_name | Scope (computer science) |
| keywords[6].id | https://openalex.org/keywords/field |
| keywords[6].score | 0.4699837267398834 |
| keywords[6].display_name | Field (mathematics) |
| keywords[7].id | https://openalex.org/keywords/drug-development |
| keywords[7].score | 0.4662334620952606 |
| keywords[7].display_name | Drug development |
| keywords[8].id | https://openalex.org/keywords/gradient-boosting |
| keywords[8].score | 0.4614189565181732 |
| keywords[8].display_name | Gradient boosting |
| keywords[9].id | https://openalex.org/keywords/context |
| keywords[9].score | 0.43703943490982056 |
| keywords[9].display_name | Context (archaeology) |
| keywords[10].id | https://openalex.org/keywords/drug |
| keywords[10].score | 0.17216354608535767 |
| keywords[10].display_name | Drug |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.1137559711933136 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.07987317442893982 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1111/cts.70172 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S106654227 |
| locations[0].source.issn | 1752-8054, 1752-8062 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1752-8054 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Clinical and Translational Science |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cts.70172 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Clinical and Translational Science |
| locations[0].landing_page_url | https://doi.org/10.1111/cts.70172 |
| locations[1].id | pmid:40067353 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Clinical and translational science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40067353 |
| locations[2].id | pmh:oai:doaj.org/article:7aa5e19ae5d644aab807bed8dc20ede4 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Clinical and Translational Science, Vol 18, Iss 3, Pp n/a-n/a (2025) |
| locations[2].landing_page_url | https://doaj.org/article/7aa5e19ae5d644aab807bed8dc20ede4 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11895769 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Clin Transl Sci |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11895769 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5102023201 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0839-4425 |
| authorships[0].author.display_name | Matthew Wiens |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210137375 |
| authorships[0].affiliations[0].raw_affiliation_string | Metrum Research Group, Boston, Massachusetts, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210137375 |
| authorships[0].institutions[0].ror | https://ror.org/04j2hh758 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210137375 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Metrum Research Group (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matthew Wiens |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Metrum Research Group, Boston, Massachusetts, USA |
| authorships[1].author.id | https://openalex.org/A5116579822 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Alissa Verone‐Boyle |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1297540436 |
| authorships[1].affiliations[0].raw_affiliation_string | Biogen, Cambridge, Massachusetts, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1297540436 |
| authorships[1].institutions[0].ror | https://ror.org/02jqkb192 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I1297540436 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Biogen (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alissa Verone‐Boyle |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Biogen, Cambridge, Massachusetts, USA |
| authorships[2].author.id | https://openalex.org/A5010348079 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9361-6976 |
| authorships[2].author.display_name | Nick Henscheid |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2801686373 |
| authorships[2].affiliations[0].raw_affiliation_string | Critical Path Institute, Tucson, Arizona, USA |
| authorships[2].institutions[0].id | https://openalex.org/I2801686373 |
| authorships[2].institutions[0].ror | https://ror.org/02mgtg880 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I2801686373 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Critical Path Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nick Henscheid |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Critical Path Institute, Tucson, Arizona, USA |
| authorships[3].author.id | https://openalex.org/A5000995300 |
| authorships[3].author.orcid | https://orcid.org/0009-0001-3922-3549 |
| authorships[3].author.display_name | Jagdeep T. Podichetty |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2801686373 |
| authorships[3].affiliations[0].raw_affiliation_string | Critical Path Institute, Tucson, Arizona, USA |
| authorships[3].institutions[0].id | https://openalex.org/I2801686373 |
| authorships[3].institutions[0].ror | https://ror.org/02mgtg880 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I2801686373 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Critical Path Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jagdeep T. Podichetty |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Critical Path Institute, Tucson, Arizona, USA |
| authorships[4].author.id | https://openalex.org/A5050176243 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0910-2041 |
| authorships[4].author.display_name | Jackson Burton |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1297540436 |
| authorships[4].affiliations[0].raw_affiliation_string | Biogen, Cambridge, Massachusetts, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1297540436 |
| authorships[4].institutions[0].ror | https://ror.org/02jqkb192 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1297540436 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Biogen (United States) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jackson Burton |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Biogen, Cambridge, Massachusetts, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cts.70172 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-03-12T00:00:00 |
| display_name | A Tutorial and Use Case Example of the |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2967733078, https://openalex.org/W3204430031, https://openalex.org/W3137904399, https://openalex.org/W4310492845, https://openalex.org/W2885778889, https://openalex.org/W4310224730, https://openalex.org/W2766514146, https://openalex.org/W4289703016, https://openalex.org/W2885516856, https://openalex.org/W3094138326 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 18 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1111/cts.70172 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S106654227 |
| best_oa_location.source.issn | 1752-8054, 1752-8062 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1752-8054 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Clinical and Translational Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cts.70172 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Clinical and Translational Science |
| best_oa_location.landing_page_url | https://doi.org/10.1111/cts.70172 |
| primary_location.id | doi:10.1111/cts.70172 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S106654227 |
| primary_location.source.issn | 1752-8054, 1752-8062 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1752-8054 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Clinical and Translational Science |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cts.70172 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Clinical and Translational Science |
| primary_location.landing_page_url | https://doi.org/10.1111/cts.70172 |
| publication_date | 2025-03-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1678356000, https://openalex.org/W2295598076, https://openalex.org/W4395685954, https://openalex.org/W3157299818, https://openalex.org/W4321248207, https://openalex.org/W4391075000, https://openalex.org/W4392915052, https://openalex.org/W4319460521, https://openalex.org/W3186074534, https://openalex.org/W4301391527, https://openalex.org/W4393008533, https://openalex.org/W4297312505, https://openalex.org/W4309113432, https://openalex.org/W4399980061, https://openalex.org/W4396213301, https://openalex.org/W4389885061, https://openalex.org/W2991229128, https://openalex.org/W4390783780, https://openalex.org/W4389149401, https://openalex.org/W4283008375, https://openalex.org/W4386496107, https://openalex.org/W4398764576, https://openalex.org/W6926238688, https://openalex.org/W6888847952, https://openalex.org/W4383559244, https://openalex.org/W4399834978, https://openalex.org/W4392880216, https://openalex.org/W4392628336, https://openalex.org/W3080515170, https://openalex.org/W4389937012, https://openalex.org/W4362521296, https://openalex.org/W4292840680, https://openalex.org/W4223430324, https://openalex.org/W4398195161, https://openalex.org/W3107263672 |
| referenced_works_count | 35 |
| abstract_inverted_index.A | 18 |
| abstract_inverted_index.a | 32 |
| abstract_inverted_index.In | 83, 116 |
| abstract_inverted_index.ML | 122 |
| abstract_inverted_index.be | 126 |
| abstract_inverted_index.in | 12 |
| abstract_inverted_index.is | 31, 39, 72, 88 |
| abstract_inverted_index.of | 15, 21, 28, 54, 66, 135 |
| abstract_inverted_index.on | 43, 49, 74 |
| abstract_inverted_index.to | 2, 10, 34, 79, 92, 105, 128 |
| abstract_inverted_index.aim | 87 |
| abstract_inverted_index.and | 5, 25, 52, 64, 99, 130 |
| abstract_inverted_index.can | 125 |
| abstract_inverted_index.for | 62, 89, 110 |
| abstract_inverted_index.how | 104 |
| abstract_inverted_index.so, | 85 |
| abstract_inverted_index.the | 13, 22, 44, 50, 55, 76, 80, 86, 90, 96, 107, 133 |
| abstract_inverted_index.This | 46 |
| abstract_inverted_index.code | 81 |
| abstract_inverted_index.drug | 16, 113 |
| abstract_inverted_index.gain | 93 |
| abstract_inverted_index.most | 40 |
| abstract_inverted_index.this | 118, 136 |
| abstract_inverted_index.will | 119 |
| abstract_inverted_index.with | 103 |
| abstract_inverted_index.AI/ML | 29, 37 |
| abstract_inverted_index.about | 95 |
| abstract_inverted_index.based | 42 |
| abstract_inverted_index.doing | 84 |
| abstract_inverted_index.field | 14 |
| abstract_inverted_index.scope | 134 |
| abstract_inverted_index.sound | 19 |
| abstract_inverted_index.turn, | 117 |
| abstract_inverted_index.which | 36, 124 |
| abstract_inverted_index.become | 100 |
| abstract_inverted_index.better | 101 |
| abstract_inverted_index.beyond | 132 |
| abstract_inverted_index.placed | 73 |
| abstract_inverted_index.reader | 91 |
| abstract_inverted_index.simple | 67 |
| abstract_inverted_index.versed | 102 |
| abstract_inverted_index.(AI/ML) | 8 |
| abstract_inverted_index.advance | 11 |
| abstract_inverted_index.applied | 127 |
| abstract_inverted_index.eXtreme | 57 |
| abstract_inverted_index.focuses | 48 |
| abstract_inverted_index.guiding | 26 |
| abstract_inverted_index.machine | 6 |
| abstract_inverted_index.popular | 56 |
| abstract_inverted_index.provide | 120 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Emphasis | 71 |
| abstract_inverted_index.approach | 38 |
| abstract_inverted_index.boosting | 59 |
| abstract_inverted_index.clinical | 68, 112 |
| abstract_inverted_index.concepts | 24, 51, 78 |
| abstract_inverted_index.context. | 45 |
| abstract_inverted_index.continue | 9 |
| abstract_inverted_index.gradient | 58 |
| abstract_inverted_index.learning | 7 |
| abstract_inverted_index.problems | 131 |
| abstract_inverted_index.relating | 75 |
| abstract_inverted_index.relevant | 111 |
| abstract_inverted_index.tutorial | 47 |
| abstract_inverted_index.(XGBoost) | 60 |
| abstract_inverted_index.algorithm | 61, 98, 108 |
| abstract_inverted_index.datasets. | 70 |
| abstract_inverted_index.functions | 109 |
| abstract_inverted_index.implement | 106 |
| abstract_inverted_index.knowledge | 94 |
| abstract_inverted_index.practical | 121 |
| abstract_inverted_index.tutorial. | 137 |
| abstract_inverted_index.Approaches | 1 |
| abstract_inverted_index.algorithms | 129 |
| abstract_inverted_index.artificial | 3 |
| abstract_inverted_index.experience | 123 |
| abstract_inverted_index.principles | 27 |
| abstract_inverted_index.questions. | 115 |
| abstract_inverted_index.regression | 65 |
| abstract_inverted_index.underlying | 23, 77, 97 |
| abstract_inverted_index.appropriate | 41 |
| abstract_inverted_index.development | 114 |
| abstract_inverted_index.identifying | 35 |
| abstract_inverted_index.development. | 17 |
| abstract_inverted_index.intelligence | 4 |
| abstract_inverted_index.prerequisite | 33 |
| abstract_inverted_index.trial‐like | 69 |
| abstract_inverted_index.understanding | 20 |
| abstract_inverted_index.classification | 63 |
| abstract_inverted_index.implementation | 30, 53 |
| abstract_inverted_index.implementation. | 82 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5050176243 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I1297540436 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.99844348 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |