A Tutorial on Conducting Mediation Analysis with Exposure Mixtures Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.10916
Causal mediation analysis is a powerful tool in environmental health research, allowing researchers to uncover the pathways through which exposures influence health outcomes. While traditional mediation methods have been widely applied to individual exposures, real-world scenarios often involve complex mixtures. Such mixtures introduce unique methodological challenges, including multicollinearity, sparsity of active exposures, and potential nonlinear and interactive effects. This paper provides an overview of several commonly used approaches for mediation analysis under exposure mixture settings with clear strategies and code for implementation. The methods include: single exposure mediation analysis (SE-MA), principal component-based mediation analysis, environmental risk score-based mediation analysis, and Bayesian kernel machine regression causal mediation analysis. While SE-MA serves as a baseline that analyzes each exposure individually, the other methods are designed to address the correlation and complexity inherent in exposure mixtures. For each method, we aim to clarify the target estimand and the assumptions that each method is making to render a causal interpretation of the estimates obtained. We conduct a simulation study to systematically evaluate the operating characteristics of these four methods to estimate global indirect effects and to identify individual exposures contributing to the global mediation under varying sample sizes, effect sizes, and exposure-mediator-outcome structures. We also illustrate their real-world applicability by examining data from the PROTECT birth cohort, specifically analyzing the relationship between prenatal exposure to phthalate mixtures and neonatal head circumference Z-score, with leukotriene E4 as a mediator. This example offers practical guidance for conducting mediation analysis in complex environmental contexts.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.10916
- https://arxiv.org/pdf/2509.10916
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414598649
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414598649Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.10916Digital Object Identifier
- Title
-
A Tutorial on Conducting Mediation Analysis with Exposure MixturesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-13Full publication date if available
- Authors
-
Yiran Wang, Yi-Ting Lin, Sean P. McGrath, John D. Meeker, Sung Kyun Park, Joshua L. Warren, Bhramar MukherjeeList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.10916Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.10916Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.10916Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414598649 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.10916 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.10916 |
| ids.openalex | https://openalex.org/W4414598649 |
| fwci | |
| type | preprint |
| title | A Tutorial on Conducting Mediation Analysis with Exposure Mixtures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10780 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.2806999981403351 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2213 |
| topics[0].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[0].display_name | Reliability and Maintenance Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.10916 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.10916 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.10916 |
| locations[1].id | doi:10.48550/arxiv.2509.10916 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.10916 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5076139871 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yiran Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Yiran |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100850089 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-8605-4086 |
| authorships[1].author.display_name | Yi-Ting Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin, Yi-Ting |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5045026515 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sean P. McGrath |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | McGrath, Sean |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5039853092 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8357-5085 |
| authorships[3].author.display_name | John D. Meeker |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Meeker, John D. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5065187501 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9981-6250 |
| authorships[4].author.display_name | Sung Kyun Park |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Park, Sung Kyun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5119759696 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Joshua L. Warren |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Warren, Joshua L. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5082251592 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0118-4561 |
| authorships[6].author.display_name | Bhramar Mukherjee |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Mukherjee, Bhramar |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.10916 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Tutorial on Conducting Mediation Analysis with Exposure Mixtures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10780 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.2806999981403351 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2213 |
| primary_topic.subfield.display_name | Safety, Risk, Reliability and Quality |
| primary_topic.display_name | Reliability and Maintenance Optimization |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.10916 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.10916 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.10916 |
| primary_location.id | pmh:oai:arXiv.org:2509.10916 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.10916 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.10916 |
| publication_date | 2025-09-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 111, 153, 162, 232 |
| abstract_inverted_index.E4 | 230 |
| abstract_inverted_index.We | 160, 199 |
| abstract_inverted_index.an | 61 |
| abstract_inverted_index.as | 110, 231 |
| abstract_inverted_index.by | 205 |
| abstract_inverted_index.in | 7, 130, 243 |
| abstract_inverted_index.is | 3, 149 |
| abstract_inverted_index.of | 49, 63, 156, 171 |
| abstract_inverted_index.to | 13, 31, 123, 138, 151, 165, 175, 181, 186, 220 |
| abstract_inverted_index.we | 136 |
| abstract_inverted_index.For | 133 |
| abstract_inverted_index.The | 82 |
| abstract_inverted_index.aim | 137 |
| abstract_inverted_index.and | 52, 55, 78, 99, 127, 143, 180, 196, 223 |
| abstract_inverted_index.are | 121 |
| abstract_inverted_index.for | 68, 80, 239 |
| abstract_inverted_index.the | 15, 118, 125, 140, 144, 157, 168, 187, 209, 215 |
| abstract_inverted_index.Such | 40 |
| abstract_inverted_index.This | 58, 234 |
| abstract_inverted_index.also | 200 |
| abstract_inverted_index.been | 28 |
| abstract_inverted_index.code | 79 |
| abstract_inverted_index.data | 207 |
| abstract_inverted_index.each | 115, 134, 147 |
| abstract_inverted_index.four | 173 |
| abstract_inverted_index.from | 208 |
| abstract_inverted_index.have | 27 |
| abstract_inverted_index.head | 225 |
| abstract_inverted_index.risk | 95 |
| abstract_inverted_index.that | 113, 146 |
| abstract_inverted_index.tool | 6 |
| abstract_inverted_index.used | 66 |
| abstract_inverted_index.with | 75, 228 |
| abstract_inverted_index.SE-MA | 108 |
| abstract_inverted_index.While | 23, 107 |
| abstract_inverted_index.birth | 211 |
| abstract_inverted_index.clear | 76 |
| abstract_inverted_index.often | 36 |
| abstract_inverted_index.other | 119 |
| abstract_inverted_index.paper | 59 |
| abstract_inverted_index.study | 164 |
| abstract_inverted_index.their | 202 |
| abstract_inverted_index.these | 172 |
| abstract_inverted_index.under | 71, 190 |
| abstract_inverted_index.which | 18 |
| abstract_inverted_index.Causal | 0 |
| abstract_inverted_index.active | 50 |
| abstract_inverted_index.causal | 104, 154 |
| abstract_inverted_index.effect | 194 |
| abstract_inverted_index.global | 177, 188 |
| abstract_inverted_index.health | 9, 21 |
| abstract_inverted_index.kernel | 101 |
| abstract_inverted_index.making | 150 |
| abstract_inverted_index.method | 148 |
| abstract_inverted_index.offers | 236 |
| abstract_inverted_index.render | 152 |
| abstract_inverted_index.sample | 192 |
| abstract_inverted_index.serves | 109 |
| abstract_inverted_index.single | 85 |
| abstract_inverted_index.sizes, | 193, 195 |
| abstract_inverted_index.target | 141 |
| abstract_inverted_index.unique | 43 |
| abstract_inverted_index.widely | 29 |
| abstract_inverted_index.PROTECT | 210 |
| abstract_inverted_index.address | 124 |
| abstract_inverted_index.applied | 30 |
| abstract_inverted_index.between | 217 |
| abstract_inverted_index.clarify | 139 |
| abstract_inverted_index.cohort, | 212 |
| abstract_inverted_index.complex | 38, 244 |
| abstract_inverted_index.conduct | 161 |
| abstract_inverted_index.effects | 179 |
| abstract_inverted_index.example | 235 |
| abstract_inverted_index.involve | 37 |
| abstract_inverted_index.machine | 102 |
| abstract_inverted_index.method, | 135 |
| abstract_inverted_index.methods | 26, 83, 120, 174 |
| abstract_inverted_index.mixture | 73 |
| abstract_inverted_index.several | 64 |
| abstract_inverted_index.through | 17 |
| abstract_inverted_index.uncover | 14 |
| abstract_inverted_index.varying | 191 |
| abstract_inverted_index.(SE-MA), | 89 |
| abstract_inverted_index.Bayesian | 100 |
| abstract_inverted_index.Z-score, | 227 |
| abstract_inverted_index.allowing | 11 |
| abstract_inverted_index.analysis | 2, 70, 88, 242 |
| abstract_inverted_index.analyzes | 114 |
| abstract_inverted_index.baseline | 112 |
| abstract_inverted_index.commonly | 65 |
| abstract_inverted_index.designed | 122 |
| abstract_inverted_index.effects. | 57 |
| abstract_inverted_index.estimand | 142 |
| abstract_inverted_index.estimate | 176 |
| abstract_inverted_index.evaluate | 167 |
| abstract_inverted_index.exposure | 72, 86, 116, 131, 219 |
| abstract_inverted_index.guidance | 238 |
| abstract_inverted_index.identify | 182 |
| abstract_inverted_index.include: | 84 |
| abstract_inverted_index.indirect | 178 |
| abstract_inverted_index.inherent | 129 |
| abstract_inverted_index.mixtures | 41, 222 |
| abstract_inverted_index.neonatal | 224 |
| abstract_inverted_index.overview | 62 |
| abstract_inverted_index.pathways | 16 |
| abstract_inverted_index.powerful | 5 |
| abstract_inverted_index.prenatal | 218 |
| abstract_inverted_index.provides | 60 |
| abstract_inverted_index.settings | 74 |
| abstract_inverted_index.sparsity | 48 |
| abstract_inverted_index.analysis, | 93, 98 |
| abstract_inverted_index.analysis. | 106 |
| abstract_inverted_index.analyzing | 214 |
| abstract_inverted_index.contexts. | 246 |
| abstract_inverted_index.estimates | 158 |
| abstract_inverted_index.examining | 206 |
| abstract_inverted_index.exposures | 19, 184 |
| abstract_inverted_index.including | 46 |
| abstract_inverted_index.influence | 20 |
| abstract_inverted_index.introduce | 42 |
| abstract_inverted_index.mediation | 1, 25, 69, 87, 92, 97, 105, 189, 241 |
| abstract_inverted_index.mediator. | 233 |
| abstract_inverted_index.mixtures. | 39, 132 |
| abstract_inverted_index.nonlinear | 54 |
| abstract_inverted_index.obtained. | 159 |
| abstract_inverted_index.operating | 169 |
| abstract_inverted_index.outcomes. | 22 |
| abstract_inverted_index.phthalate | 221 |
| abstract_inverted_index.potential | 53 |
| abstract_inverted_index.practical | 237 |
| abstract_inverted_index.principal | 90 |
| abstract_inverted_index.research, | 10 |
| abstract_inverted_index.scenarios | 35 |
| abstract_inverted_index.approaches | 67 |
| abstract_inverted_index.complexity | 128 |
| abstract_inverted_index.conducting | 240 |
| abstract_inverted_index.exposures, | 33, 51 |
| abstract_inverted_index.illustrate | 201 |
| abstract_inverted_index.individual | 32, 183 |
| abstract_inverted_index.real-world | 34, 203 |
| abstract_inverted_index.regression | 103 |
| abstract_inverted_index.simulation | 163 |
| abstract_inverted_index.strategies | 77 |
| abstract_inverted_index.assumptions | 145 |
| abstract_inverted_index.challenges, | 45 |
| abstract_inverted_index.correlation | 126 |
| abstract_inverted_index.interactive | 56 |
| abstract_inverted_index.leukotriene | 229 |
| abstract_inverted_index.researchers | 12 |
| abstract_inverted_index.score-based | 96 |
| abstract_inverted_index.structures. | 198 |
| abstract_inverted_index.traditional | 24 |
| abstract_inverted_index.contributing | 185 |
| abstract_inverted_index.relationship | 216 |
| abstract_inverted_index.specifically | 213 |
| abstract_inverted_index.applicability | 204 |
| abstract_inverted_index.circumference | 226 |
| abstract_inverted_index.environmental | 8, 94, 245 |
| abstract_inverted_index.individually, | 117 |
| abstract_inverted_index.interpretation | 155 |
| abstract_inverted_index.methodological | 44 |
| abstract_inverted_index.systematically | 166 |
| abstract_inverted_index.characteristics | 170 |
| abstract_inverted_index.component-based | 91 |
| abstract_inverted_index.implementation. | 81 |
| abstract_inverted_index.multicollinearity, | 47 |
| abstract_inverted_index.exposure-mediator-outcome | 197 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |