A Tutorial on Thompson Sampling Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1707.02038
Thompson sampling is an algorithm for online decision problems where actions are taken sequentially in a manner that must balance between exploiting what is known to maximize immediate performance and investing to accumulate new information that may improve future performance. The algorithm addresses a broad range of problems in a computationally efficient manner and is therefore enjoying wide use. This tutorial covers the algorithm and its application, illustrating concepts through a range of examples, including Bernoulli bandit problems, shortest path problems, product recommendation, assortment, active learning with neural networks, and reinforcement learning in Markov decision processes. Most of these problems involve complex information structures, where information revealed by taking an action informs beliefs about other actions. We will also discuss when and why Thompson sampling is or is not effective and relations to alternative algorithms.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1707.02038
- https://arxiv.org/pdf/1707.02038
- OA Status
- green
- Cited By
- 39
- References
- 71
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2731829640
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2731829640Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1707.02038Digital Object Identifier
- Title
-
A Tutorial on Thompson SamplingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-07-07Full publication date if available
- Authors
-
Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng WenList of authors in order
- Landing page
-
https://arxiv.org/abs/1707.02038Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1707.02038Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1707.02038Direct OA link when available
- Concepts
-
Computer science, Reinforcement learning, Markov decision process, Artificial intelligence, Range (aeronautics), Thompson sampling, Sampling (signal processing), Shortest path problem, Machine learning, Product (mathematics), Theoretical computer science, Mathematical optimization, Markov process, Bayesian probability, Mathematics, Geometry, Statistics, Filter (signal processing), Composite material, Graph, Materials science, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
39Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1, 2022: 2, 2021: 14Per-year citation counts (last 5 years)
- References (count)
-
71Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2731829640 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1707.02038 |
| ids.doi | https://doi.org/10.48550/arxiv.1707.02038 |
| ids.mag | 2731829640 |
| ids.openalex | https://openalex.org/W2731829640 |
| fwci | 4.99843043 |
| type | preprint |
| title | A Tutorial on Thompson Sampling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12101 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Advanced Bandit Algorithms Research |
| topics[1].id | https://openalex.org/T12288 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Optimization and Search Problems |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9987999796867371 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7698812484741211 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7082949280738831 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C106189395 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5830783843994141 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q176789 |
| concepts[2].display_name | Markov decision process |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5581893920898438 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C204323151 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5508164167404175 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[4].display_name | Range (aeronautics) |
| concepts[5].id | https://openalex.org/C73602740 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5223066210746765 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7795822 |
| concepts[5].display_name | Thompson sampling |
| concepts[6].id | https://openalex.org/C140779682 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5192775726318359 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[6].display_name | Sampling (signal processing) |
| concepts[7].id | https://openalex.org/C22590252 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5044018030166626 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1058754 |
| concepts[7].display_name | Shortest path problem |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.48628509044647217 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C90673727 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4306696653366089 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q901718 |
| concepts[9].display_name | Product (mathematics) |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3660033345222473 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3397272825241089 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C159886148 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2686443328857422 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[12].display_name | Markov process |
| concepts[13].id | https://openalex.org/C107673813 |
| concepts[13].level | 2 |
| concepts[13].score | 0.16009092330932617 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[13].display_name | Bayesian probability |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.13860362768173218 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C106131492 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[17].display_name | Filter (signal processing) |
| concepts[18].id | https://openalex.org/C159985019 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[18].display_name | Composite material |
| concepts[19].id | https://openalex.org/C132525143 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[19].display_name | Graph |
| concepts[20].id | https://openalex.org/C192562407 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[20].display_name | Materials science |
| concepts[21].id | https://openalex.org/C31972630 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[21].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7698812484741211 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.7082949280738831 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/markov-decision-process |
| keywords[2].score | 0.5830783843994141 |
| keywords[2].display_name | Markov decision process |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5581893920898438 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/range |
| keywords[4].score | 0.5508164167404175 |
| keywords[4].display_name | Range (aeronautics) |
| keywords[5].id | https://openalex.org/keywords/thompson-sampling |
| keywords[5].score | 0.5223066210746765 |
| keywords[5].display_name | Thompson sampling |
| keywords[6].id | https://openalex.org/keywords/sampling |
| keywords[6].score | 0.5192775726318359 |
| keywords[6].display_name | Sampling (signal processing) |
| keywords[7].id | https://openalex.org/keywords/shortest-path-problem |
| keywords[7].score | 0.5044018030166626 |
| keywords[7].display_name | Shortest path problem |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.48628509044647217 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/product |
| keywords[9].score | 0.4306696653366089 |
| keywords[9].display_name | Product (mathematics) |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.3660033345222473 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[11].score | 0.3397272825241089 |
| keywords[11].display_name | Mathematical optimization |
| keywords[12].id | https://openalex.org/keywords/markov-process |
| keywords[12].score | 0.2686443328857422 |
| keywords[12].display_name | Markov process |
| keywords[13].id | https://openalex.org/keywords/bayesian-probability |
| keywords[13].score | 0.16009092330932617 |
| keywords[13].display_name | Bayesian probability |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.13860362768173218 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1707.02038 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1707.02038 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1707.02038 |
| locations[1].id | doi:10.48550/arxiv.1707.02038 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1707.02038 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101747404 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5926-8624 |
| authorships[0].author.display_name | Daniel Russo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel Russo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5045543562 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8364-3746 |
| authorships[1].author.display_name | Benjamin Van Roy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Benjamin Van Roy |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5061745728 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Abbas Kazerouni |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abbas Kazerouni |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5015899120 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ian Osband |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ian Osband |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067555437 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6987-6463 |
| authorships[4].author.display_name | Zheng Wen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zheng Wen |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1707.02038 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Tutorial on Thompson Sampling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12101 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Advanced Bandit Algorithms Research |
| related_works | https://openalex.org/W3096874164, https://openalex.org/W1985560493, https://openalex.org/W2937181779, https://openalex.org/W2386410636, https://openalex.org/W2357975469, https://openalex.org/W2145363145, https://openalex.org/W1626977535, https://openalex.org/W2341346307, https://openalex.org/W3168977894, https://openalex.org/W2128957716 |
| cited_by_count | 39 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 14 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 7 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 10 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1707.02038 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1707.02038 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1707.02038 |
| primary_location.id | pmh:oai:arXiv.org:1707.02038 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1707.02038 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1707.02038 |
| publication_date | 2017-07-07 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2107550635, https://openalex.org/W2166566250, https://openalex.org/W1850488217, https://openalex.org/W2164102968, https://openalex.org/W2130527179, https://openalex.org/W2962883620, https://openalex.org/W2108738385, https://openalex.org/W1988360637, https://openalex.org/W2617740248, https://openalex.org/W1992549066, https://openalex.org/W2141645258, https://openalex.org/W2120090487, https://openalex.org/W2573470024, https://openalex.org/W2963713569, https://openalex.org/W2167433878, https://openalex.org/W1983452151, https://openalex.org/W2039522160, https://openalex.org/W2317700292, https://openalex.org/W2166253248, https://openalex.org/W2158319693, https://openalex.org/W1589747210, https://openalex.org/W2006022852, https://openalex.org/W2799181865, https://openalex.org/W148122774, https://openalex.org/W2115519224, https://openalex.org/W2618347144, https://openalex.org/W2163840227, https://openalex.org/W3121632328, https://openalex.org/W2168405694, https://openalex.org/W2604960773, https://openalex.org/W2158125716, https://openalex.org/W2963603291, https://openalex.org/W2162979096, https://openalex.org/W2111764152, https://openalex.org/W2029164135, https://openalex.org/W2964143446, https://openalex.org/W2611058514, https://openalex.org/W2072302356, https://openalex.org/W2093217068, https://openalex.org/W2104049095, https://openalex.org/W1582436621, https://openalex.org/W2118309135, https://openalex.org/W2009551863, https://openalex.org/W2753355075, https://openalex.org/W50486269, https://openalex.org/W2625705959, https://openalex.org/W2149721706, https://openalex.org/W1900560890, https://openalex.org/W2182342230, https://openalex.org/W2962767126, https://openalex.org/W2121863487, https://openalex.org/W2163738067, https://openalex.org/W2963373419, https://openalex.org/W2963938771, https://openalex.org/W2952787800, https://openalex.org/W1583882820, https://openalex.org/W1911551976, https://openalex.org/W2773557179, https://openalex.org/W2061753713, https://openalex.org/W2964000194, https://openalex.org/W2332257675, https://openalex.org/W123701566, https://openalex.org/W2562674776, https://openalex.org/W2182000050, https://openalex.org/W2743027853, https://openalex.org/W2962901934, https://openalex.org/W825717146, https://openalex.org/W2155927283, https://openalex.org/W2791950347, https://openalex.org/W2400263016, https://openalex.org/W2128957716 |
| referenced_works_count | 71 |
| abstract_inverted_index.a | 15, 43, 49, 70 |
| abstract_inverted_index.We | 116 |
| abstract_inverted_index.an | 3, 109 |
| abstract_inverted_index.by | 107 |
| abstract_inverted_index.in | 14, 48, 92 |
| abstract_inverted_index.is | 2, 23, 54, 125, 127 |
| abstract_inverted_index.of | 46, 72, 97 |
| abstract_inverted_index.or | 126 |
| abstract_inverted_index.to | 25, 31, 132 |
| abstract_inverted_index.The | 40 |
| abstract_inverted_index.and | 29, 53, 64, 89, 121, 130 |
| abstract_inverted_index.are | 11 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.its | 65 |
| abstract_inverted_index.may | 36 |
| abstract_inverted_index.new | 33 |
| abstract_inverted_index.not | 128 |
| abstract_inverted_index.the | 62 |
| abstract_inverted_index.why | 122 |
| abstract_inverted_index.Most | 96 |
| abstract_inverted_index.This | 59 |
| abstract_inverted_index.also | 118 |
| abstract_inverted_index.must | 18 |
| abstract_inverted_index.path | 79 |
| abstract_inverted_index.that | 17, 35 |
| abstract_inverted_index.use. | 58 |
| abstract_inverted_index.what | 22 |
| abstract_inverted_index.when | 120 |
| abstract_inverted_index.wide | 57 |
| abstract_inverted_index.will | 117 |
| abstract_inverted_index.with | 86 |
| abstract_inverted_index.about | 113 |
| abstract_inverted_index.broad | 44 |
| abstract_inverted_index.known | 24 |
| abstract_inverted_index.other | 114 |
| abstract_inverted_index.range | 45, 71 |
| abstract_inverted_index.taken | 12 |
| abstract_inverted_index.these | 98 |
| abstract_inverted_index.where | 9, 104 |
| abstract_inverted_index.Markov | 93 |
| abstract_inverted_index.action | 110 |
| abstract_inverted_index.active | 84 |
| abstract_inverted_index.bandit | 76 |
| abstract_inverted_index.covers | 61 |
| abstract_inverted_index.future | 38 |
| abstract_inverted_index.manner | 16, 52 |
| abstract_inverted_index.neural | 87 |
| abstract_inverted_index.online | 6 |
| abstract_inverted_index.taking | 108 |
| abstract_inverted_index.actions | 10 |
| abstract_inverted_index.balance | 19 |
| abstract_inverted_index.beliefs | 112 |
| abstract_inverted_index.between | 20 |
| abstract_inverted_index.complex | 101 |
| abstract_inverted_index.discuss | 119 |
| abstract_inverted_index.improve | 37 |
| abstract_inverted_index.informs | 111 |
| abstract_inverted_index.involve | 100 |
| abstract_inverted_index.product | 81 |
| abstract_inverted_index.through | 69 |
| abstract_inverted_index.Thompson | 0, 123 |
| abstract_inverted_index.actions. | 115 |
| abstract_inverted_index.concepts | 68 |
| abstract_inverted_index.decision | 7, 94 |
| abstract_inverted_index.enjoying | 56 |
| abstract_inverted_index.learning | 85, 91 |
| abstract_inverted_index.maximize | 26 |
| abstract_inverted_index.problems | 8, 47, 99 |
| abstract_inverted_index.revealed | 106 |
| abstract_inverted_index.sampling | 1, 124 |
| abstract_inverted_index.shortest | 78 |
| abstract_inverted_index.tutorial | 60 |
| abstract_inverted_index.Bernoulli | 75 |
| abstract_inverted_index.addresses | 42 |
| abstract_inverted_index.algorithm | 4, 41, 63 |
| abstract_inverted_index.effective | 129 |
| abstract_inverted_index.efficient | 51 |
| abstract_inverted_index.examples, | 73 |
| abstract_inverted_index.immediate | 27 |
| abstract_inverted_index.including | 74 |
| abstract_inverted_index.investing | 30 |
| abstract_inverted_index.networks, | 88 |
| abstract_inverted_index.problems, | 77, 80 |
| abstract_inverted_index.relations | 131 |
| abstract_inverted_index.therefore | 55 |
| abstract_inverted_index.accumulate | 32 |
| abstract_inverted_index.exploiting | 21 |
| abstract_inverted_index.processes. | 95 |
| abstract_inverted_index.algorithms. | 134 |
| abstract_inverted_index.alternative | 133 |
| abstract_inverted_index.assortment, | 83 |
| abstract_inverted_index.information | 34, 102, 105 |
| abstract_inverted_index.performance | 28 |
| abstract_inverted_index.structures, | 103 |
| abstract_inverted_index.application, | 66 |
| abstract_inverted_index.illustrating | 67 |
| abstract_inverted_index.performance. | 39 |
| abstract_inverted_index.sequentially | 13 |
| abstract_inverted_index.reinforcement | 90 |
| abstract_inverted_index.computationally | 50 |
| abstract_inverted_index.recommendation, | 82 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.9509942 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |