A Tutorial on Unidimensional Unfolding: From Automatic Item Generation to Insightful Inferences Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/5hnkz
Unfolding theory maps individuals and stimuli into a common latent space, reflecting preferences through proximity. Unlike traditional psychometric methods, unfolding models are complex and computationally intensive, leading to their underuse despite their potential for nuanced insights. This study presents a tutorial on unidimensional unfolding, using ChatGPT to create items and providing R functions for analysis. Structured sequentially, we first describe what AIG is, highlighting the possible improvements allowed by large language models in general. Subsequently, the unidimensional unfolding theory, synonymous with the Coombs system, is introduced as the foundation for our AIG procedure. The following section is a description of our rationale on the approach to training ChatGPT in the creation of items via the binary tree structure, concurrently instructing the reader on how to analyze the data. We then present a practical case study focusing on the measurement of attention-seeking tendencies, with a comprehensive presentation and commentary on the necessary R code. The paper concludes with reflections on future directions for research endeavors.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/5hnkz
- https://osf.io/5hnkz/download
- OA Status
- gold
- Cited By
- 1
- References
- 77
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386790544
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386790544Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/5hnkzDigital Object Identifier
- Title
-
A Tutorial on Unidimensional Unfolding: From Automatic Item Generation to Insightful InferencesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-14Full publication date if available
- Authors
-
Víthor Rosa Franco, Lucas de Francisco CarvalhoList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/5hnkzPublisher landing page
- PDF URL
-
https://osf.io/5hnkz/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://osf.io/5hnkz/downloadDirect OA link when available
- Concepts
-
Computer science, Presentation (obstetrics), Code (set theory), Foundation (evidence), Section (typography), Space (punctuation), Data science, Tree (set theory), Artificial intelligence, Epistemology, Cognitive science, Psychology, Set (abstract data type), Programming language, Mathematics, Mathematical analysis, Philosophy, Radiology, Medicine, History, Operating system, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386790544 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/5hnkz |
| ids.doi | https://doi.org/10.31234/osf.io/5hnkz |
| ids.openalex | https://openalex.org/W4386790544 |
| fwci | 0.41664021 |
| type | preprint |
| title | A Tutorial on Unidimensional Unfolding: From Automatic Item Generation to Insightful Inferences |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13283 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9779000282287598 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Mental Health Research Topics |
| topics[1].id | https://openalex.org/T10315 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9702000021934509 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1800 |
| topics[1].subfield.display_name | General Decision Sciences |
| topics[1].display_name | Decision-Making and Behavioral Economics |
| topics[2].id | https://openalex.org/T11902 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9427000284194946 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Intelligent Tutoring Systems and Adaptive Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6919975876808167 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777601897 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6376266479492188 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3409113 |
| concepts[1].display_name | Presentation (obstetrics) |
| concepts[2].id | https://openalex.org/C2776760102 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5299514532089233 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[2].display_name | Code (set theory) |
| concepts[3].id | https://openalex.org/C2780966255 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5237897634506226 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5474306 |
| concepts[3].display_name | Foundation (evidence) |
| concepts[4].id | https://openalex.org/C2780129039 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5163044333457947 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1931107 |
| concepts[4].display_name | Section (typography) |
| concepts[5].id | https://openalex.org/C2778572836 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5064014196395874 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[5].display_name | Space (punctuation) |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43112218379974365 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C113174947 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42503881454467773 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[7].display_name | Tree (set theory) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4133397936820984 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C111472728 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39176517724990845 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[9].display_name | Epistemology |
| concepts[10].id | https://openalex.org/C188147891 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3248138427734375 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[10].display_name | Cognitive science |
| concepts[11].id | https://openalex.org/C15744967 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3049347698688507 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[11].display_name | Psychology |
| concepts[12].id | https://openalex.org/C177264268 |
| concepts[12].level | 2 |
| concepts[12].score | 0.18389597535133362 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[12].display_name | Set (abstract data type) |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.17197060585021973 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11352398991584778 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C126838900 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[17].display_name | Radiology |
| concepts[18].id | https://openalex.org/C71924100 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[18].display_name | Medicine |
| concepts[19].id | https://openalex.org/C95457728 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[19].display_name | History |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| concepts[21].id | https://openalex.org/C166957645 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[21].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6919975876808167 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/presentation |
| keywords[1].score | 0.6376266479492188 |
| keywords[1].display_name | Presentation (obstetrics) |
| keywords[2].id | https://openalex.org/keywords/code |
| keywords[2].score | 0.5299514532089233 |
| keywords[2].display_name | Code (set theory) |
| keywords[3].id | https://openalex.org/keywords/foundation |
| keywords[3].score | 0.5237897634506226 |
| keywords[3].display_name | Foundation (evidence) |
| keywords[4].id | https://openalex.org/keywords/section |
| keywords[4].score | 0.5163044333457947 |
| keywords[4].display_name | Section (typography) |
| keywords[5].id | https://openalex.org/keywords/space |
| keywords[5].score | 0.5064014196395874 |
| keywords[5].display_name | Space (punctuation) |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.43112218379974365 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/tree |
| keywords[7].score | 0.42503881454467773 |
| keywords[7].display_name | Tree (set theory) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4133397936820984 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/epistemology |
| keywords[9].score | 0.39176517724990845 |
| keywords[9].display_name | Epistemology |
| keywords[10].id | https://openalex.org/keywords/cognitive-science |
| keywords[10].score | 0.3248138427734375 |
| keywords[10].display_name | Cognitive science |
| keywords[11].id | https://openalex.org/keywords/psychology |
| keywords[11].score | 0.3049347698688507 |
| keywords[11].display_name | Psychology |
| keywords[12].id | https://openalex.org/keywords/set |
| keywords[12].score | 0.18389597535133362 |
| keywords[12].display_name | Set (abstract data type) |
| keywords[13].id | https://openalex.org/keywords/programming-language |
| keywords[13].score | 0.17197060585021973 |
| keywords[13].display_name | Programming language |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.11352398991584778 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.31234/osf.io/5hnkz |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://osf.io/5hnkz/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/5hnkz |
| locations[1].id | pmh:oai:share.osf.io:d1022e68-608d-47ba-bcdc-33cf3a28603b |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400047 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Arabixiv (OSF Preprints) |
| locations[1].source.host_organization | https://openalex.org/I2799848540 |
| locations[1].source.host_organization_name | Center for Open Science |
| locations[1].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Preprint |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://osf.io/5hnkz |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5044797587 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8929-3238 |
| authorships[0].author.display_name | Víthor Rosa Franco |
| authorships[0].countries | BR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I81009624 |
| authorships[0].affiliations[0].raw_affiliation_string | Post-graduate Program in Psychology, Department of Psychology, University of São Francisco, Campinas, Brazil. |
| authorships[0].institutions[0].id | https://openalex.org/I81009624 |
| authorships[0].institutions[0].ror | https://ror.org/045ae7j03 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I81009624 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Universidade São Francisco |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Víthor Rosa Franco |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Post-graduate Program in Psychology, Department of Psychology, University of São Francisco, Campinas, Brazil. |
| authorships[1].author.id | https://openalex.org/A5069526393 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3274-9724 |
| authorships[1].author.display_name | Lucas de Francisco Carvalho |
| authorships[1].countries | BR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I81009624 |
| authorships[1].affiliations[0].raw_affiliation_string | Post-graduate Program in Psychology, Department of Psychology, University of São Francisco, Campinas, Brazil. |
| authorships[1].institutions[0].id | https://openalex.org/I81009624 |
| authorships[1].institutions[0].ror | https://ror.org/045ae7j03 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I81009624 |
| authorships[1].institutions[0].country_code | BR |
| authorships[1].institutions[0].display_name | Universidade São Francisco |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Lucas de Francisco Carvalho |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Post-graduate Program in Psychology, Department of Psychology, University of São Francisco, Campinas, Brazil. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://osf.io/5hnkz/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Tutorial on Unidimensional Unfolding: From Automatic Item Generation to Insightful Inferences |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13283 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9779000282287598 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Mental Health Research Topics |
| related_works | https://openalex.org/W2560853036, https://openalex.org/W2566696415, https://openalex.org/W1563787543, https://openalex.org/W4387426029, https://openalex.org/W4239980664, https://openalex.org/W4249026152, https://openalex.org/W4231213805, https://openalex.org/W4244585678, https://openalex.org/W4254162896, https://openalex.org/W2909241626 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.31234/osf.io/5hnkz |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://osf.io/5hnkz/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/5hnkz |
| primary_location.id | doi:10.31234/osf.io/5hnkz |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://osf.io/5hnkz/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/5hnkz |
| publication_date | 2023-09-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2034996255, https://openalex.org/W2016473184, https://openalex.org/W1994806416, https://openalex.org/W2024355049, https://openalex.org/W2856852083, https://openalex.org/W2299480452, https://openalex.org/W2048182169, https://openalex.org/W2141024148, https://openalex.org/W4320009668, https://openalex.org/W2071519987, https://openalex.org/W6668639094, https://openalex.org/W1737534555, https://openalex.org/W1972903097, https://openalex.org/W2089366927, https://openalex.org/W2172219851, https://openalex.org/W2169065610, https://openalex.org/W2133907116, https://openalex.org/W2004142419, https://openalex.org/W4318014888, https://openalex.org/W4360620450, https://openalex.org/W2794406174, https://openalex.org/W146206334, https://openalex.org/W2021795050, https://openalex.org/W4214509822, https://openalex.org/W6712716043, https://openalex.org/W3108041100, https://openalex.org/W4312365687, https://openalex.org/W584942340, https://openalex.org/W4225425474, https://openalex.org/W7064370740, https://openalex.org/W2745464303, https://openalex.org/W2041933808, https://openalex.org/W1641003075, https://openalex.org/W1966831164, https://openalex.org/W4386621473, https://openalex.org/W2183581773, https://openalex.org/W2315260934, https://openalex.org/W4366420437, https://openalex.org/W4323338788, https://openalex.org/W2101713682, https://openalex.org/W3199412738, https://openalex.org/W2547157941, https://openalex.org/W6825277519, https://openalex.org/W1701833299, https://openalex.org/W2089669221, https://openalex.org/W1975630747, https://openalex.org/W2152133916, https://openalex.org/W2159666573, https://openalex.org/W2111796815, https://openalex.org/W3033487789, https://openalex.org/W2582743722, https://openalex.org/W4313582009, https://openalex.org/W2099645748, https://openalex.org/W2054959741, https://openalex.org/W4318069287, https://openalex.org/W2169371330, https://openalex.org/W4256550993, https://openalex.org/W2153888979, https://openalex.org/W4323025178, https://openalex.org/W1968967632, https://openalex.org/W6739901393, https://openalex.org/W6680022924, https://openalex.org/W2102720318, https://openalex.org/W4399583563, https://openalex.org/W2132892763, https://openalex.org/W4317910584, https://openalex.org/W4386790544, https://openalex.org/W4367626167, https://openalex.org/W2398901192, https://openalex.org/W4243760503, https://openalex.org/W4385245566, https://openalex.org/W1980073965, https://openalex.org/W1967937306, https://openalex.org/W4252529058, https://openalex.org/W4298167190, https://openalex.org/W4366823268, https://openalex.org/W4383987495 |
| referenced_works_count | 77 |
| abstract_inverted_index.R | 51, 151 |
| abstract_inverted_index.a | 7, 39, 97, 131, 143 |
| abstract_inverted_index.We | 128 |
| abstract_inverted_index.as | 86 |
| abstract_inverted_index.by | 68 |
| abstract_inverted_index.in | 72, 108 |
| abstract_inverted_index.is | 84, 96 |
| abstract_inverted_index.of | 99, 111, 139 |
| abstract_inverted_index.on | 41, 102, 122, 136, 148, 158 |
| abstract_inverted_index.to | 27, 46, 105, 124 |
| abstract_inverted_index.we | 57 |
| abstract_inverted_index.AIG | 61, 91 |
| abstract_inverted_index.The | 93, 153 |
| abstract_inverted_index.and | 4, 23, 49, 146 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.for | 33, 53, 89, 161 |
| abstract_inverted_index.how | 123 |
| abstract_inverted_index.is, | 62 |
| abstract_inverted_index.our | 90, 100 |
| abstract_inverted_index.the | 64, 75, 81, 87, 103, 109, 114, 120, 126, 137, 149 |
| abstract_inverted_index.via | 113 |
| abstract_inverted_index.This | 36 |
| abstract_inverted_index.case | 133 |
| abstract_inverted_index.into | 6 |
| abstract_inverted_index.maps | 2 |
| abstract_inverted_index.then | 129 |
| abstract_inverted_index.tree | 116 |
| abstract_inverted_index.what | 60 |
| abstract_inverted_index.with | 80, 142, 156 |
| abstract_inverted_index.code. | 152 |
| abstract_inverted_index.data. | 127 |
| abstract_inverted_index.first | 58 |
| abstract_inverted_index.items | 48, 112 |
| abstract_inverted_index.large | 69 |
| abstract_inverted_index.paper | 154 |
| abstract_inverted_index.study | 37, 134 |
| abstract_inverted_index.their | 28, 31 |
| abstract_inverted_index.using | 44 |
| abstract_inverted_index.Coombs | 82 |
| abstract_inverted_index.Unlike | 15 |
| abstract_inverted_index.binary | 115 |
| abstract_inverted_index.common | 8 |
| abstract_inverted_index.create | 47 |
| abstract_inverted_index.future | 159 |
| abstract_inverted_index.latent | 9 |
| abstract_inverted_index.models | 20, 71 |
| abstract_inverted_index.reader | 121 |
| abstract_inverted_index.space, | 10 |
| abstract_inverted_index.theory | 1 |
| abstract_inverted_index.ChatGPT | 45, 107 |
| abstract_inverted_index.allowed | 67 |
| abstract_inverted_index.analyze | 125 |
| abstract_inverted_index.complex | 22 |
| abstract_inverted_index.despite | 30 |
| abstract_inverted_index.leading | 26 |
| abstract_inverted_index.nuanced | 34 |
| abstract_inverted_index.present | 130 |
| abstract_inverted_index.section | 95 |
| abstract_inverted_index.stimuli | 5 |
| abstract_inverted_index.system, | 83 |
| abstract_inverted_index.theory, | 78 |
| abstract_inverted_index.through | 13 |
| abstract_inverted_index.approach | 104 |
| abstract_inverted_index.creation | 110 |
| abstract_inverted_index.describe | 59 |
| abstract_inverted_index.focusing | 135 |
| abstract_inverted_index.general. | 73 |
| abstract_inverted_index.language | 70 |
| abstract_inverted_index.methods, | 18 |
| abstract_inverted_index.possible | 65 |
| abstract_inverted_index.presents | 38 |
| abstract_inverted_index.research | 162 |
| abstract_inverted_index.training | 106 |
| abstract_inverted_index.tutorial | 40 |
| abstract_inverted_index.underuse | 29 |
| abstract_inverted_index.Unfolding | 0 |
| abstract_inverted_index.analysis. | 54 |
| abstract_inverted_index.concludes | 155 |
| abstract_inverted_index.following | 94 |
| abstract_inverted_index.functions | 52 |
| abstract_inverted_index.insights. | 35 |
| abstract_inverted_index.necessary | 150 |
| abstract_inverted_index.potential | 32 |
| abstract_inverted_index.practical | 132 |
| abstract_inverted_index.providing | 50 |
| abstract_inverted_index.rationale | 101 |
| abstract_inverted_index.unfolding | 19, 77 |
| abstract_inverted_index.Structured | 55 |
| abstract_inverted_index.commentary | 147 |
| abstract_inverted_index.directions | 160 |
| abstract_inverted_index.endeavors. | 163 |
| abstract_inverted_index.foundation | 88 |
| abstract_inverted_index.intensive, | 25 |
| abstract_inverted_index.introduced | 85 |
| abstract_inverted_index.procedure. | 92 |
| abstract_inverted_index.proximity. | 14 |
| abstract_inverted_index.reflecting | 11 |
| abstract_inverted_index.structure, | 117 |
| abstract_inverted_index.synonymous | 79 |
| abstract_inverted_index.unfolding, | 43 |
| abstract_inverted_index.description | 98 |
| abstract_inverted_index.individuals | 3 |
| abstract_inverted_index.instructing | 119 |
| abstract_inverted_index.measurement | 138 |
| abstract_inverted_index.preferences | 12 |
| abstract_inverted_index.reflections | 157 |
| abstract_inverted_index.tendencies, | 141 |
| abstract_inverted_index.traditional | 16 |
| abstract_inverted_index.concurrently | 118 |
| abstract_inverted_index.highlighting | 63 |
| abstract_inverted_index.improvements | 66 |
| abstract_inverted_index.presentation | 145 |
| abstract_inverted_index.psychometric | 17 |
| abstract_inverted_index.Subsequently, | 74 |
| abstract_inverted_index.comprehensive | 144 |
| abstract_inverted_index.sequentially, | 56 |
| abstract_inverted_index.unidimensional | 42, 76 |
| abstract_inverted_index.computationally | 24 |
| abstract_inverted_index.attention-seeking | 140 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.6078494 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |