A Two-Stage Framework with Self-Supervised Distillation For Cross-Domain Text Classification Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2304.09820
Cross-domain text classification aims to adapt models to a target domain that lacks labeled data. It leverages or reuses rich labeled data from the different but related source domain(s) and unlabeled data from the target domain. To this end, previous work focuses on either extracting domain-invariant features or task-agnostic features, ignoring domain-aware features that may be present in the target domain and could be useful for the downstream task. In this paper, we propose a two-stage framework for cross-domain text classification. In the first stage, we finetune the model with mask language modeling (MLM) and labeled data from the source domain. In the second stage, we further fine-tune the model with self-supervised distillation (SSD) and unlabeled data from the target domain. We evaluate its performance on a public cross-domain text classification benchmark and the experiment results show that our method achieves new state-of-the-art results for both single-source domain adaptations (94.17% $\uparrow$1.03%) and multi-source domain adaptations (95.09% $\uparrow$1.34%).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2304.09820
- https://arxiv.org/pdf/2304.09820
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366566347
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366566347Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2304.09820Digital Object Identifier
- Title
-
A Two-Stage Framework with Self-Supervised Distillation For Cross-Domain Text ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-18Full publication date if available
- Authors
-
Yun‐Long Feng, Bohan Li, Libo Qin, Xu Xiao, Wanxiang CheList of authors in order
- Landing page
-
https://arxiv.org/abs/2304.09820Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2304.09820Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2304.09820Direct OA link when available
- Concepts
-
Computer science, Domain (mathematical analysis), Benchmark (surveying), Artificial intelligence, Labeled data, Distillation, Task (project management), Invariant (physics), Natural language processing, Machine learning, Pattern recognition (psychology), Mathematics, Engineering, Chemistry, Mathematical physics, Geography, Mathematical analysis, Systems engineering, Geodesy, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366566347 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2304.09820 |
| ids.doi | https://doi.org/10.48550/arxiv.2304.09820 |
| ids.openalex | https://openalex.org/W4366566347 |
| fwci | |
| type | preprint |
| title | A Two-Stage Framework with Self-Supervised Distillation For Cross-Domain Text Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11550 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9373999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7867938280105591 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C36503486 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7227110862731934 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[1].display_name | Domain (mathematical analysis) |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6810322999954224 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6253871917724609 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2776145971 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5589127540588379 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[4].display_name | Labeled data |
| concepts[5].id | https://openalex.org/C204030448 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5206105709075928 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q101017 |
| concepts[5].display_name | Distillation |
| concepts[6].id | https://openalex.org/C2780451532 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4620686173439026 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[6].display_name | Task (project management) |
| concepts[7].id | https://openalex.org/C190470478 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4485359489917755 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2370229 |
| concepts[7].display_name | Invariant (physics) |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.421691358089447 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39534276723861694 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.38602137565612793 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09499740600585938 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.061667799949645996 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.06025362014770508 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C37914503 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q156495 |
| concepts[14].display_name | Mathematical physics |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C201995342 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[17].display_name | Systems engineering |
| concepts[18].id | https://openalex.org/C13280743 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[18].display_name | Geodesy |
| concepts[19].id | https://openalex.org/C178790620 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[19].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7867938280105591 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/domain |
| keywords[1].score | 0.7227110862731934 |
| keywords[1].display_name | Domain (mathematical analysis) |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.6810322999954224 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6253871917724609 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/labeled-data |
| keywords[4].score | 0.5589127540588379 |
| keywords[4].display_name | Labeled data |
| keywords[5].id | https://openalex.org/keywords/distillation |
| keywords[5].score | 0.5206105709075928 |
| keywords[5].display_name | Distillation |
| keywords[6].id | https://openalex.org/keywords/task |
| keywords[6].score | 0.4620686173439026 |
| keywords[6].display_name | Task (project management) |
| keywords[7].id | https://openalex.org/keywords/invariant |
| keywords[7].score | 0.4485359489917755 |
| keywords[7].display_name | Invariant (physics) |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.421691358089447 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.39534276723861694 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.38602137565612793 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.09499740600585938 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.061667799949645996 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/chemistry |
| keywords[13].score | 0.06025362014770508 |
| keywords[13].display_name | Chemistry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2304.09820 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2304.09820 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2304.09820 |
| locations[1].id | doi:10.48550/arxiv.2304.09820 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2304.09820 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100295583 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0561-8841 |
| authorships[0].author.display_name | Yun‐Long Feng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feng, Yunlong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100443974 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3408-9037 |
| authorships[1].author.display_name | Bohan Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Bohan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029082837 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3619-675X |
| authorships[2].author.display_name | Libo Qin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qin, Libo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100319784 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5774-1094 |
| authorships[3].author.display_name | Xu Xiao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Xiao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5019108029 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3907-0335 |
| authorships[4].author.display_name | Wanxiang Che |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Che, Wanxiang |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2304.09820 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-04-22T00:00:00 |
| display_name | A Two-Stage Framework with Self-Supervised Distillation For Cross-Domain Text Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11550 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9373999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Text and Document Classification Technologies |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W972276598, https://openalex.org/W2087343574, https://openalex.org/W4246352526, https://openalex.org/W3144173820 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2304.09820 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2304.09820 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2304.09820 |
| primary_location.id | pmh:oai:arXiv.org:2304.09820 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2304.09820 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2304.09820 |
| publication_date | 2023-04-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 74, 126 |
| abstract_inverted_index.In | 69, 81, 101 |
| abstract_inverted_index.It | 15 |
| abstract_inverted_index.To | 36 |
| abstract_inverted_index.We | 121 |
| abstract_inverted_index.be | 55, 63 |
| abstract_inverted_index.in | 57 |
| abstract_inverted_index.on | 42, 125 |
| abstract_inverted_index.or | 17, 47 |
| abstract_inverted_index.to | 4, 7 |
| abstract_inverted_index.we | 72, 85, 105 |
| abstract_inverted_index.and | 29, 61, 94, 114, 132, 151 |
| abstract_inverted_index.but | 25 |
| abstract_inverted_index.for | 65, 77, 144 |
| abstract_inverted_index.its | 123 |
| abstract_inverted_index.may | 54 |
| abstract_inverted_index.new | 141 |
| abstract_inverted_index.our | 138 |
| abstract_inverted_index.the | 23, 33, 58, 66, 82, 87, 98, 102, 108, 118, 133 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.both | 145 |
| abstract_inverted_index.data | 21, 31, 96, 116 |
| abstract_inverted_index.end, | 38 |
| abstract_inverted_index.from | 22, 32, 97, 117 |
| abstract_inverted_index.mask | 90 |
| abstract_inverted_index.rich | 19 |
| abstract_inverted_index.show | 136 |
| abstract_inverted_index.text | 1, 79, 129 |
| abstract_inverted_index.that | 11, 53, 137 |
| abstract_inverted_index.this | 37, 70 |
| abstract_inverted_index.with | 89, 110 |
| abstract_inverted_index.work | 40 |
| abstract_inverted_index.(MLM) | 93 |
| abstract_inverted_index.(SSD) | 113 |
| abstract_inverted_index.adapt | 5 |
| abstract_inverted_index.could | 62 |
| abstract_inverted_index.data. | 14 |
| abstract_inverted_index.first | 83 |
| abstract_inverted_index.lacks | 12 |
| abstract_inverted_index.model | 88, 109 |
| abstract_inverted_index.task. | 68 |
| abstract_inverted_index.domain | 10, 60, 147, 153 |
| abstract_inverted_index.either | 43 |
| abstract_inverted_index.method | 139 |
| abstract_inverted_index.models | 6 |
| abstract_inverted_index.paper, | 71 |
| abstract_inverted_index.public | 127 |
| abstract_inverted_index.reuses | 18 |
| abstract_inverted_index.second | 103 |
| abstract_inverted_index.source | 27, 99 |
| abstract_inverted_index.stage, | 84, 104 |
| abstract_inverted_index.target | 9, 34, 59, 119 |
| abstract_inverted_index.useful | 64 |
| abstract_inverted_index.(94.17% | 149 |
| abstract_inverted_index.(95.09% | 155 |
| abstract_inverted_index.domain. | 35, 100, 120 |
| abstract_inverted_index.focuses | 41 |
| abstract_inverted_index.further | 106 |
| abstract_inverted_index.labeled | 13, 20, 95 |
| abstract_inverted_index.present | 56 |
| abstract_inverted_index.propose | 73 |
| abstract_inverted_index.related | 26 |
| abstract_inverted_index.results | 135, 143 |
| abstract_inverted_index.achieves | 140 |
| abstract_inverted_index.evaluate | 122 |
| abstract_inverted_index.features | 46, 52 |
| abstract_inverted_index.finetune | 86 |
| abstract_inverted_index.ignoring | 50 |
| abstract_inverted_index.language | 91 |
| abstract_inverted_index.modeling | 92 |
| abstract_inverted_index.previous | 39 |
| abstract_inverted_index.benchmark | 131 |
| abstract_inverted_index.different | 24 |
| abstract_inverted_index.domain(s) | 28 |
| abstract_inverted_index.features, | 49 |
| abstract_inverted_index.fine-tune | 107 |
| abstract_inverted_index.framework | 76 |
| abstract_inverted_index.leverages | 16 |
| abstract_inverted_index.two-stage | 75 |
| abstract_inverted_index.unlabeled | 30, 115 |
| abstract_inverted_index.downstream | 67 |
| abstract_inverted_index.experiment | 134 |
| abstract_inverted_index.extracting | 44 |
| abstract_inverted_index.adaptations | 148, 154 |
| abstract_inverted_index.performance | 124 |
| abstract_inverted_index.Cross-domain | 0 |
| abstract_inverted_index.cross-domain | 78, 128 |
| abstract_inverted_index.distillation | 112 |
| abstract_inverted_index.domain-aware | 51 |
| abstract_inverted_index.multi-source | 152 |
| abstract_inverted_index.single-source | 146 |
| abstract_inverted_index.task-agnostic | 48 |
| abstract_inverted_index.classification | 2, 130 |
| abstract_inverted_index.classification. | 80 |
| abstract_inverted_index.self-supervised | 111 |
| abstract_inverted_index.$\uparrow$1.03%) | 150 |
| abstract_inverted_index.domain-invariant | 45 |
| abstract_inverted_index.state-of-the-art | 142 |
| abstract_inverted_index.$\uparrow$1.34%). | 156 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |