A two-step machining and active learning approach for right-first-time robotic countersinking through in-process error compensation and prediction of depth of cuts Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.rcim.2022.102345
Robotic machining processes are characterised by errors arising from the limitations of the industrial robots. These robot-related errors can compromise the overall manufacturing process performance, resulting in final products with dimensions different from the nominal specifications. To avoid accumulation of errors through several manufacturing stages, a quality inspection step is usually performed after the cutting operation. This work presents an innovative two-step manufacturing method for achieving right-first-time characteristics in robotic machining operations through in-process inspection and compensation of the systematic errors, whilst collecting suitable training data for building predictive models. The key idea behind the proposed method is based on the observation that under certain conditions, the robotic machining errors remain largely consistent, and therefore by splitting the process into two similar steps and having an inspection step in between, a prediction and then compensation of the systematic errors would be possible. A Gaussian Process Regression (GPR) framework is applied for the creation of robust process models that predict the post-process inspection result from in-process signal features, with the associated confidence intervals. An active learning algorithm that makes online decisions on the inspection task based on the current confidence of the models, is also proposed. The two-step machining method and the active learning approach were both tested on a robotic countersinking process experiment. The results showed that the in-process inspection and error compensation of the proposed two-step machining method was able to achieve final countersink depths very close to the desired target, confirming the potential for right-first-time robotic machining. In addition, the active learning results highlighted the ability of the algorithm to reduce the number of required post-process inspections, thus saving both time and costs, whilst also identifying novel data relevant for the model training.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.rcim.2022.102345
- OA Status
- hybrid
- Cited By
- 19
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221071325
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221071325Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.rcim.2022.102345Digital Object Identifier
- Title
-
A two-step machining and active learning approach for right-first-time robotic countersinking through in-process error compensation and prediction of depth of cutsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-11Full publication date if available
- Authors
-
Mateo Leco, Thomas E. McLeay, Visakan KadirkamanathanList of authors in order
- Landing page
-
https://doi.org/10.1016/j.rcim.2022.102345Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.rcim.2022.102345Direct OA link when available
- Concepts
-
Machining, Compensation (psychology), Process (computing), Computer science, Robot, Artificial intelligence, Engineering, Mechanical engineering, Psychoanalysis, Psychology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 7, 2023: 3, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221071325 |
|---|---|
| doi | https://doi.org/10.1016/j.rcim.2022.102345 |
| ids.doi | https://doi.org/10.1016/j.rcim.2022.102345 |
| ids.openalex | https://openalex.org/W4221071325 |
| fwci | 2.34933635 |
| type | article |
| title | A two-step machining and active learning approach for right-first-time robotic countersinking through in-process error compensation and prediction of depth of cuts |
| awards[0].id | https://openalex.org/G6137072339 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/P006930/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[1].id | https://openalex.org/G4695460998 |
| awards[1].funder_id | https://openalex.org/F4320338337 |
| awards[1].display_name | |
| awards[1].funder_award_id | 608022 |
| awards[1].funder_display_name | H2020 Marie Skłodowska-Curie Actions |
| biblio.issue | |
| biblio.volume | 77 |
| biblio.last_page | 102345 |
| biblio.first_page | 102345 |
| topics[0].id | https://openalex.org/T10188 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Advanced machining processes and optimization |
| topics[1].id | https://openalex.org/T11159 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Manufacturing Process and Optimization |
| topics[2].id | https://openalex.org/T12282 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9747999906539917 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Mineral Processing and Grinding |
| funders[0].id | https://openalex.org/F4320333065 |
| funders[0].ror | |
| funders[0].display_name | Seventh Framework Programme |
| funders[1].id | https://openalex.org/F4320334627 |
| funders[1].ror | https://ror.org/0439y7842 |
| funders[1].display_name | Engineering and Physical Sciences Research Council |
| funders[2].id | https://openalex.org/F4320338337 |
| funders[2].ror | |
| funders[2].display_name | H2020 Marie Skłodowska-Curie Actions |
| funders[3].id | https://openalex.org/F4320338368 |
| funders[3].ror | https://ror.org/00k4n6c32 |
| funders[3].display_name | FP7 People: Marie-Curie Actions |
| is_xpac | False |
| apc_list.value | 4240 |
| apc_list.currency | USD |
| apc_list.value_usd | 4240 |
| apc_paid.value | 4240 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4240 |
| concepts[0].id | https://openalex.org/C523214423 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7858873605728149 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192047 |
| concepts[0].display_name | Machining |
| concepts[1].id | https://openalex.org/C2780023022 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7450239062309265 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1338171 |
| concepts[1].display_name | Compensation (psychology) |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.710857093334198 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5156213641166687 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C90509273 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47586768865585327 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[4].display_name | Robot |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42855846881866455 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.37582436203956604 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C78519656 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1907319724559784 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[7].display_name | Mechanical engineering |
| concepts[8].id | https://openalex.org/C11171543 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q41630 |
| concepts[8].display_name | Psychoanalysis |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/machining |
| keywords[0].score | 0.7858873605728149 |
| keywords[0].display_name | Machining |
| keywords[1].id | https://openalex.org/keywords/compensation |
| keywords[1].score | 0.7450239062309265 |
| keywords[1].display_name | Compensation (psychology) |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.710857093334198 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5156213641166687 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/robot |
| keywords[4].score | 0.47586768865585327 |
| keywords[4].display_name | Robot |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.42855846881866455 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.37582436203956604 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[7].score | 0.1907319724559784 |
| keywords[7].display_name | Mechanical engineering |
| language | en |
| locations[0].id | doi:10.1016/j.rcim.2022.102345 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S118216261 |
| locations[0].source.issn | 0736-5845, 1879-2537 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0736-5845 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Robotics and Computer-Integrated Manufacturing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Robotics and Computer-Integrated Manufacturing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.rcim.2022.102345 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5047153561 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4515-5327 |
| authorships[0].author.display_name | Mateo Leco |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I91136226 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210149363, https://openalex.org/I91136226 |
| authorships[0].affiliations[1].raw_affiliation_string | Advanced Manufacturing Research Centre (AMRC), The University of Sheffield, Sheffield, UK |
| authorships[0].institutions[0].id | https://openalex.org/I4210149363 |
| authorships[0].institutions[0].ror | https://ror.org/04m20rz92 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210149363 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Advanced Manufacturing Research Centre |
| authorships[0].institutions[1].id | https://openalex.org/I91136226 |
| authorships[0].institutions[1].ror | https://ror.org/05krs5044 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I91136226 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | University of Sheffield |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mateo Leco |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Advanced Manufacturing Research Centre (AMRC), The University of Sheffield, Sheffield, UK, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK |
| authorships[1].author.id | https://openalex.org/A5029482447 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7509-0771 |
| authorships[1].author.display_name | Thomas E. McLeay |
| authorships[1].countries | GB, SE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210149363, https://openalex.org/I91136226 |
| authorships[1].affiliations[0].raw_affiliation_string | Advanced Manufacturing Research Centre (AMRC), The University of Sheffield, Sheffield, UK |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I130375150 |
| authorships[1].affiliations[1].raw_affiliation_string | Sandvik Coromant AB, Stockholm, Sweden |
| authorships[1].institutions[0].id | https://openalex.org/I4210149363 |
| authorships[1].institutions[0].ror | https://ror.org/04m20rz92 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210149363 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Advanced Manufacturing Research Centre |
| authorships[1].institutions[1].id | https://openalex.org/I91136226 |
| authorships[1].institutions[1].ror | https://ror.org/05krs5044 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I91136226 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | University of Sheffield |
| authorships[1].institutions[2].id | https://openalex.org/I130375150 |
| authorships[1].institutions[2].ror | https://ror.org/00qp5gr06 |
| authorships[1].institutions[2].type | company |
| authorships[1].institutions[2].lineage | https://openalex.org/I130375150 |
| authorships[1].institutions[2].country_code | SE |
| authorships[1].institutions[2].display_name | Sandvik (Sweden) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Thomas McLeay |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Advanced Manufacturing Research Centre (AMRC), The University of Sheffield, Sheffield, UK, Sandvik Coromant AB, Stockholm, Sweden |
| authorships[2].author.id | https://openalex.org/A5085942306 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4243-2501 |
| authorships[2].author.display_name | Visakan Kadirkamanathan |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91136226 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK |
| authorships[2].institutions[0].id | https://openalex.org/I91136226 |
| authorships[2].institutions[0].ror | https://ror.org/05krs5044 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91136226 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Sheffield |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Visakan Kadirkamanathan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.rcim.2022.102345 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A two-step machining and active learning approach for right-first-time robotic countersinking through in-process error compensation and prediction of depth of cuts |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10188 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Advanced machining processes and optimization |
| related_works | https://openalex.org/W2803338891, https://openalex.org/W2112229447, https://openalex.org/W2043267898, https://openalex.org/W2063119839, https://openalex.org/W2036155574, https://openalex.org/W2053955898, https://openalex.org/W2355268135, https://openalex.org/W2369113923, https://openalex.org/W2044622684, https://openalex.org/W568403567 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.rcim.2022.102345 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S118216261 |
| best_oa_location.source.issn | 0736-5845, 1879-2537 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0736-5845 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Robotics and Computer-Integrated Manufacturing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Robotics and Computer-Integrated Manufacturing |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.rcim.2022.102345 |
| primary_location.id | doi:10.1016/j.rcim.2022.102345 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S118216261 |
| primary_location.source.issn | 0736-5845, 1879-2537 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0736-5845 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Robotics and Computer-Integrated Manufacturing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Robotics and Computer-Integrated Manufacturing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.rcim.2022.102345 |
| publication_date | 2022-03-11 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6772916741, https://openalex.org/W1981000344, https://openalex.org/W2000304567, https://openalex.org/W6657747675, https://openalex.org/W7024330662, https://openalex.org/W2883315958, https://openalex.org/W2934971075, https://openalex.org/W2963044493, https://openalex.org/W2796596596, https://openalex.org/W2067743947, https://openalex.org/W2903001881, https://openalex.org/W1979266891, https://openalex.org/W3013199283, https://openalex.org/W2883385699, https://openalex.org/W3031007234, https://openalex.org/W2072475210, https://openalex.org/W6685168801, https://openalex.org/W6680539343, https://openalex.org/W1981331413, https://openalex.org/W2997398064, https://openalex.org/W3025943301, https://openalex.org/W3006003631, https://openalex.org/W2945644060, https://openalex.org/W2063537031, https://openalex.org/W6768525098, https://openalex.org/W6629804754, https://openalex.org/W6798554034, https://openalex.org/W3129161421, https://openalex.org/W3093474123, https://openalex.org/W3149459453, https://openalex.org/W2021732807, https://openalex.org/W2012878613, https://openalex.org/W6657573321, https://openalex.org/W2978047770, https://openalex.org/W3178973648, https://openalex.org/W2980373102, https://openalex.org/W1502922572, https://openalex.org/W3186055524, https://openalex.org/W2029145405, https://openalex.org/W3007935701, https://openalex.org/W2138703024 |
| referenced_works_count | 41 |
| abstract_inverted_index.A | 142 |
| abstract_inverted_index.a | 45, 130, 208 |
| abstract_inverted_index.An | 172 |
| abstract_inverted_index.In | 249 |
| abstract_inverted_index.To | 36 |
| abstract_inverted_index.an | 59, 125 |
| abstract_inverted_index.be | 140 |
| abstract_inverted_index.by | 5, 115 |
| abstract_inverted_index.in | 26, 68, 128 |
| abstract_inverted_index.is | 49, 97, 148, 192 |
| abstract_inverted_index.of | 11, 39, 77, 135, 153, 189, 223, 258, 265 |
| abstract_inverted_index.on | 99, 180, 185, 207 |
| abstract_inverted_index.to | 231, 238, 261 |
| abstract_inverted_index.The | 90, 195, 213 |
| abstract_inverted_index.and | 75, 113, 123, 132, 199, 220, 273 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.can | 18 |
| abstract_inverted_index.for | 64, 86, 150, 245, 281 |
| abstract_inverted_index.key | 91 |
| abstract_inverted_index.the | 9, 12, 20, 33, 53, 78, 94, 100, 106, 117, 136, 151, 159, 168, 181, 186, 190, 200, 217, 224, 239, 243, 251, 256, 259, 263, 282 |
| abstract_inverted_index.two | 120 |
| abstract_inverted_index.was | 229 |
| abstract_inverted_index.This | 56 |
| abstract_inverted_index.able | 230 |
| abstract_inverted_index.also | 193, 276 |
| abstract_inverted_index.both | 205, 271 |
| abstract_inverted_index.data | 85, 279 |
| abstract_inverted_index.from | 8, 32, 163 |
| abstract_inverted_index.idea | 92 |
| abstract_inverted_index.into | 119 |
| abstract_inverted_index.step | 48, 127 |
| abstract_inverted_index.task | 183 |
| abstract_inverted_index.that | 102, 157, 176, 216 |
| abstract_inverted_index.then | 133 |
| abstract_inverted_index.thus | 269 |
| abstract_inverted_index.time | 272 |
| abstract_inverted_index.very | 236 |
| abstract_inverted_index.were | 204 |
| abstract_inverted_index.with | 29, 167 |
| abstract_inverted_index.work | 57 |
| abstract_inverted_index.(GPR) | 146 |
| abstract_inverted_index.These | 15 |
| abstract_inverted_index.after | 52 |
| abstract_inverted_index.avoid | 37 |
| abstract_inverted_index.based | 98, 184 |
| abstract_inverted_index.close | 237 |
| abstract_inverted_index.error | 221 |
| abstract_inverted_index.final | 27, 233 |
| abstract_inverted_index.makes | 177 |
| abstract_inverted_index.model | 283 |
| abstract_inverted_index.novel | 278 |
| abstract_inverted_index.steps | 122 |
| abstract_inverted_index.under | 103 |
| abstract_inverted_index.would | 139 |
| abstract_inverted_index.active | 173, 201, 252 |
| abstract_inverted_index.behind | 93 |
| abstract_inverted_index.costs, | 274 |
| abstract_inverted_index.depths | 235 |
| abstract_inverted_index.errors | 6, 17, 40, 109, 138 |
| abstract_inverted_index.having | 124 |
| abstract_inverted_index.method | 63, 96, 198, 228 |
| abstract_inverted_index.models | 156 |
| abstract_inverted_index.number | 264 |
| abstract_inverted_index.online | 178 |
| abstract_inverted_index.reduce | 262 |
| abstract_inverted_index.remain | 110 |
| abstract_inverted_index.result | 162 |
| abstract_inverted_index.robust | 154 |
| abstract_inverted_index.saving | 270 |
| abstract_inverted_index.showed | 215 |
| abstract_inverted_index.signal | 165 |
| abstract_inverted_index.tested | 206 |
| abstract_inverted_index.whilst | 81, 275 |
| abstract_inverted_index.Process | 144 |
| abstract_inverted_index.Robotic | 0 |
| abstract_inverted_index.ability | 257 |
| abstract_inverted_index.achieve | 232 |
| abstract_inverted_index.applied | 149 |
| abstract_inverted_index.arising | 7 |
| abstract_inverted_index.certain | 104 |
| abstract_inverted_index.current | 187 |
| abstract_inverted_index.cutting | 54 |
| abstract_inverted_index.desired | 240 |
| abstract_inverted_index.errors, | 80 |
| abstract_inverted_index.largely | 111 |
| abstract_inverted_index.models, | 191 |
| abstract_inverted_index.models. | 89 |
| abstract_inverted_index.nominal | 34 |
| abstract_inverted_index.overall | 21 |
| abstract_inverted_index.predict | 158 |
| abstract_inverted_index.process | 23, 118, 155, 211 |
| abstract_inverted_index.quality | 46 |
| abstract_inverted_index.results | 214, 254 |
| abstract_inverted_index.robotic | 69, 107, 209, 247 |
| abstract_inverted_index.robots. | 14 |
| abstract_inverted_index.several | 42 |
| abstract_inverted_index.similar | 121 |
| abstract_inverted_index.stages, | 44 |
| abstract_inverted_index.target, | 241 |
| abstract_inverted_index.through | 41, 72 |
| abstract_inverted_index.usually | 50 |
| abstract_inverted_index.Gaussian | 143 |
| abstract_inverted_index.approach | 203 |
| abstract_inverted_index.between, | 129 |
| abstract_inverted_index.building | 87 |
| abstract_inverted_index.creation | 152 |
| abstract_inverted_index.learning | 174, 202, 253 |
| abstract_inverted_index.presents | 58 |
| abstract_inverted_index.products | 28 |
| abstract_inverted_index.proposed | 95, 225 |
| abstract_inverted_index.relevant | 280 |
| abstract_inverted_index.required | 266 |
| abstract_inverted_index.suitable | 83 |
| abstract_inverted_index.training | 84 |
| abstract_inverted_index.two-step | 61, 196, 226 |
| abstract_inverted_index.achieving | 65 |
| abstract_inverted_index.addition, | 250 |
| abstract_inverted_index.algorithm | 175, 260 |
| abstract_inverted_index.decisions | 179 |
| abstract_inverted_index.different | 31 |
| abstract_inverted_index.features, | 166 |
| abstract_inverted_index.framework | 147 |
| abstract_inverted_index.machining | 1, 70, 108, 197, 227 |
| abstract_inverted_index.performed | 51 |
| abstract_inverted_index.possible. | 141 |
| abstract_inverted_index.potential | 244 |
| abstract_inverted_index.processes | 2 |
| abstract_inverted_index.proposed. | 194 |
| abstract_inverted_index.resulting | 25 |
| abstract_inverted_index.splitting | 116 |
| abstract_inverted_index.therefore | 114 |
| abstract_inverted_index.training. | 284 |
| abstract_inverted_index.Regression | 145 |
| abstract_inverted_index.associated | 169 |
| abstract_inverted_index.collecting | 82 |
| abstract_inverted_index.compromise | 19 |
| abstract_inverted_index.confidence | 170, 188 |
| abstract_inverted_index.confirming | 242 |
| abstract_inverted_index.dimensions | 30 |
| abstract_inverted_index.in-process | 73, 164, 218 |
| abstract_inverted_index.industrial | 13 |
| abstract_inverted_index.innovative | 60 |
| abstract_inverted_index.inspection | 47, 74, 126, 161, 182, 219 |
| abstract_inverted_index.intervals. | 171 |
| abstract_inverted_index.machining. | 248 |
| abstract_inverted_index.operation. | 55 |
| abstract_inverted_index.operations | 71 |
| abstract_inverted_index.prediction | 131 |
| abstract_inverted_index.predictive | 88 |
| abstract_inverted_index.systematic | 79, 137 |
| abstract_inverted_index.conditions, | 105 |
| abstract_inverted_index.consistent, | 112 |
| abstract_inverted_index.countersink | 234 |
| abstract_inverted_index.experiment. | 212 |
| abstract_inverted_index.highlighted | 255 |
| abstract_inverted_index.identifying | 277 |
| abstract_inverted_index.limitations | 10 |
| abstract_inverted_index.observation | 101 |
| abstract_inverted_index.accumulation | 38 |
| abstract_inverted_index.compensation | 76, 134, 222 |
| abstract_inverted_index.inspections, | 268 |
| abstract_inverted_index.performance, | 24 |
| abstract_inverted_index.post-process | 160, 267 |
| abstract_inverted_index.characterised | 4 |
| abstract_inverted_index.manufacturing | 22, 43, 62 |
| abstract_inverted_index.robot-related | 16 |
| abstract_inverted_index.countersinking | 210 |
| abstract_inverted_index.characteristics | 67 |
| abstract_inverted_index.specifications. | 35 |
| abstract_inverted_index.right-first-time | 66, 246 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5047153561 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210149363, https://openalex.org/I91136226 |
| citation_normalized_percentile.value | 0.84987254 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |