A Unified Blockwise Measurement Design for Learning Quantum Channels and Lindbladians via Low-Rank Matrix Sensing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.14080
Quantum superoperator learning is a pivotal task in quantum information science, enabling accurate reconstruction of unknown quantum operations from measurement data. We propose a robust approach based on the matrix sensing techniques for quantum superoperator learning that extends beyond the positive semidefinite case, encompassing both quantum channels and Lindbladians. We first introduce a randomized measurement design using a near-optimal number of measurements. By leveraging the restricted isometry property (RIP), we provide theoretical guarantees for the identifiability and recovery of low-rank superoperators in the presence of noise. Additionally, we propose a blockwise measurement design that restricts the tomography to the sub-blocks, significantly enhancing performance while maintaining a comparable scale of measurements. We also provide a performance guarantee for this setup. Our approach employs alternating least squares (ALS) with acceleration for optimization in matrix sensing. Numerical experiments validate the efficiency and scalability of the proposed methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.14080
- https://arxiv.org/pdf/2501.14080
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406840508
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406840508Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.14080Digital Object Identifier
- Title
-
A Unified Blockwise Measurement Design for Learning Quantum Channels and Lindbladians via Low-Rank Matrix SensingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-23Full publication date if available
- Authors
-
Quanjun Lang, Jianfeng LuList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.14080Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.14080Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.14080Direct OA link when available
- Concepts
-
Matrix (chemical analysis), Rank (graph theory), Quantum, Computer science, Theoretical computer science, Mathematics, Physics, Quantum mechanics, Materials science, Combinatorics, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406840508 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.14080 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.14080 |
| ids.openalex | https://openalex.org/W4406840508 |
| fwci | |
| type | preprint |
| title | A Unified Blockwise Measurement Design for Learning Quantum Channels and Lindbladians via Low-Rank Matrix Sensing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9521999955177307 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T13182 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9437000155448914 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Quantum-Dot Cellular Automata |
| topics[2].id | https://openalex.org/T10682 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9088000059127808 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Quantum Computing Algorithms and Architecture |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C106487976 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6162648797035217 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[0].display_name | Matrix (chemical analysis) |
| concepts[1].id | https://openalex.org/C164226766 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6119987964630127 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[1].display_name | Rank (graph theory) |
| concepts[2].id | https://openalex.org/C84114770 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48753806948661804 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[2].display_name | Quantum |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.45708250999450684 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C80444323 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33170509338378906 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[4].display_name | Theoretical computer science |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3084450960159302 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.30672594904899597 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C62520636 |
| concepts[7].level | 1 |
| concepts[7].score | 0.17098072171211243 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[7].display_name | Quantum mechanics |
| concepts[8].id | https://openalex.org/C192562407 |
| concepts[8].level | 0 |
| concepts[8].score | 0.14381316304206848 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[8].display_name | Materials science |
| concepts[9].id | https://openalex.org/C114614502 |
| concepts[9].level | 1 |
| concepts[9].score | 0.09330123662948608 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[9].display_name | Combinatorics |
| concepts[10].id | https://openalex.org/C159985019 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[10].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/matrix |
| keywords[0].score | 0.6162648797035217 |
| keywords[0].display_name | Matrix (chemical analysis) |
| keywords[1].id | https://openalex.org/keywords/rank |
| keywords[1].score | 0.6119987964630127 |
| keywords[1].display_name | Rank (graph theory) |
| keywords[2].id | https://openalex.org/keywords/quantum |
| keywords[2].score | 0.48753806948661804 |
| keywords[2].display_name | Quantum |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.45708250999450684 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[4].score | 0.33170509338378906 |
| keywords[4].display_name | Theoretical computer science |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.3084450960159302 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.30672594904899597 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[7].score | 0.17098072171211243 |
| keywords[7].display_name | Quantum mechanics |
| keywords[8].id | https://openalex.org/keywords/materials-science |
| keywords[8].score | 0.14381316304206848 |
| keywords[8].display_name | Materials science |
| keywords[9].id | https://openalex.org/keywords/combinatorics |
| keywords[9].score | 0.09330123662948608 |
| keywords[9].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.14080 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.14080 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.14080 |
| locations[1].id | doi:10.48550/arxiv.2501.14080 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.14080 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5031867616 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Quanjun Lang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lang, Quanjun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102979300 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1239-6148 |
| authorships[1].author.display_name | Jianfeng Lu |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Lu, Jianfeng |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.14080 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Unified Blockwise Measurement Design for Learning Quantum Channels and Lindbladians via Low-Rank Matrix Sensing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9521999955177307 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2361403716, https://openalex.org/W2904061867, https://openalex.org/W4289115725, https://openalex.org/W2967798957, https://openalex.org/W2047537297, https://openalex.org/W3144644423, https://openalex.org/W2024384195 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.14080 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.14080 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.14080 |
| primary_location.id | pmh:oai:arXiv.org:2501.14080 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.14080 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.14080 |
| publication_date | 2025-01-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 23, 52, 57, 89, 105, 113 |
| abstract_inverted_index.By | 62 |
| abstract_inverted_index.We | 21, 49, 110 |
| abstract_inverted_index.in | 7, 81, 130 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 14, 60, 78, 84, 108, 140 |
| abstract_inverted_index.on | 27 |
| abstract_inverted_index.to | 97 |
| abstract_inverted_index.we | 69, 87 |
| abstract_inverted_index.Our | 119 |
| abstract_inverted_index.and | 47, 76, 138 |
| abstract_inverted_index.for | 32, 73, 116, 128 |
| abstract_inverted_index.the | 28, 39, 64, 74, 82, 95, 98, 136, 141 |
| abstract_inverted_index.also | 111 |
| abstract_inverted_index.both | 44 |
| abstract_inverted_index.from | 18 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.that | 36, 93 |
| abstract_inverted_index.this | 117 |
| abstract_inverted_index.with | 126 |
| abstract_inverted_index.(ALS) | 125 |
| abstract_inverted_index.based | 26 |
| abstract_inverted_index.case, | 42 |
| abstract_inverted_index.data. | 20 |
| abstract_inverted_index.first | 50 |
| abstract_inverted_index.least | 123 |
| abstract_inverted_index.scale | 107 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.while | 103 |
| abstract_inverted_index.(RIP), | 68 |
| abstract_inverted_index.beyond | 38 |
| abstract_inverted_index.design | 55, 92 |
| abstract_inverted_index.matrix | 29, 131 |
| abstract_inverted_index.noise. | 85 |
| abstract_inverted_index.number | 59 |
| abstract_inverted_index.robust | 24 |
| abstract_inverted_index.setup. | 118 |
| abstract_inverted_index.Quantum | 0 |
| abstract_inverted_index.employs | 121 |
| abstract_inverted_index.extends | 37 |
| abstract_inverted_index.pivotal | 5 |
| abstract_inverted_index.propose | 22, 88 |
| abstract_inverted_index.provide | 70, 112 |
| abstract_inverted_index.quantum | 8, 16, 33, 45 |
| abstract_inverted_index.sensing | 30 |
| abstract_inverted_index.squares | 124 |
| abstract_inverted_index.unknown | 15 |
| abstract_inverted_index.accurate | 12 |
| abstract_inverted_index.approach | 25, 120 |
| abstract_inverted_index.channels | 46 |
| abstract_inverted_index.enabling | 11 |
| abstract_inverted_index.isometry | 66 |
| abstract_inverted_index.learning | 2, 35 |
| abstract_inverted_index.low-rank | 79 |
| abstract_inverted_index.methods. | 143 |
| abstract_inverted_index.positive | 40 |
| abstract_inverted_index.presence | 83 |
| abstract_inverted_index.property | 67 |
| abstract_inverted_index.proposed | 142 |
| abstract_inverted_index.recovery | 77 |
| abstract_inverted_index.science, | 10 |
| abstract_inverted_index.sensing. | 132 |
| abstract_inverted_index.validate | 135 |
| abstract_inverted_index.Numerical | 133 |
| abstract_inverted_index.blockwise | 90 |
| abstract_inverted_index.enhancing | 101 |
| abstract_inverted_index.guarantee | 115 |
| abstract_inverted_index.introduce | 51 |
| abstract_inverted_index.restricts | 94 |
| abstract_inverted_index.comparable | 106 |
| abstract_inverted_index.efficiency | 137 |
| abstract_inverted_index.guarantees | 72 |
| abstract_inverted_index.leveraging | 63 |
| abstract_inverted_index.operations | 17 |
| abstract_inverted_index.randomized | 53 |
| abstract_inverted_index.restricted | 65 |
| abstract_inverted_index.techniques | 31 |
| abstract_inverted_index.tomography | 96 |
| abstract_inverted_index.alternating | 122 |
| abstract_inverted_index.experiments | 134 |
| abstract_inverted_index.information | 9 |
| abstract_inverted_index.maintaining | 104 |
| abstract_inverted_index.measurement | 19, 54, 91 |
| abstract_inverted_index.performance | 102, 114 |
| abstract_inverted_index.scalability | 139 |
| abstract_inverted_index.sub-blocks, | 99 |
| abstract_inverted_index.theoretical | 71 |
| abstract_inverted_index.acceleration | 127 |
| abstract_inverted_index.encompassing | 43 |
| abstract_inverted_index.near-optimal | 58 |
| abstract_inverted_index.optimization | 129 |
| abstract_inverted_index.semidefinite | 41 |
| abstract_inverted_index.Additionally, | 86 |
| abstract_inverted_index.Lindbladians. | 48 |
| abstract_inverted_index.measurements. | 61, 109 |
| abstract_inverted_index.significantly | 100 |
| abstract_inverted_index.superoperator | 1, 34 |
| abstract_inverted_index.reconstruction | 13 |
| abstract_inverted_index.superoperators | 80 |
| abstract_inverted_index.identifiability | 75 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |