A Unified Deep-Domain Adaptation Framework: Advancing Feature Separability and Local Alignment Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25123671
In transfer learning, domain adaptation is one of the key research areas. For domain adaptation, domain shift is a known problem when the data distribution of the source domain, from which the training data is fetched, and the target domain, from which the test data is fetched, vary significantly. Aligning the source and target domains is a solution, but due to alignment, the intrinsic properties of the data may be altered. To address this issue of domain shift, we introduce a novel method, called “A Unified Deep-Domain Adaptation Framework: Advancing Feature Separability and Local Alignment” (DDASLA) that incorporates an attention mechanism into the ResNet18 model to improve its feature extraction capability. Apart from self-attention, a combined loss function consisting of angular loss, Local Maximum Mean Discrepancy (LMMD), and entropy minimization is used. Angular loss enhances feature discrimination through angular alignment, whereas LMMD equalizes local data distributions across domains, and entropy minimization refines the decision boundaries. A comprehensive experiment on the Office and remote sensing datasets shows that DDASLA outperforms several state-of-the-art methods. These findings show that DDASLA improves model generalization and robustness across domains, paving the way for future domain adaptation research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25123671
- https://www.mdpi.com/1424-8220/25/12/3671/pdf?version=1749695199
- OA Status
- gold
- Cited By
- 1
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411249469
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411249469Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25123671Digital Object Identifier
- Title
-
A Unified Deep-Domain Adaptation Framework: Advancing Feature Separability and Local AlignmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-12Full publication date if available
- Authors
-
Pranav Kumar, Jimson Mathew, Rakesh Kumar Sanodiya, Avinash Chouhan, Rahul Reddy Bukkasamudram, Chandra Sai Teja AdhikarlaList of authors in order
- Landing page
-
https://doi.org/10.3390/s25123671Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/12/3671/pdf?version=1749695199Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/12/3671/pdf?version=1749695199Direct OA link when available
- Concepts
-
Feature (linguistics), Adaptation (eye), Domain (mathematical analysis), Computer science, Domain adaptation, Artificial intelligence, Pattern recognition (psychology), Mathematics, Psychology, Neuroscience, Mathematical analysis, Philosophy, Classifier (UML), LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411249469 |
|---|---|
| doi | https://doi.org/10.3390/s25123671 |
| ids.doi | https://doi.org/10.3390/s25123671 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40573558 |
| ids.openalex | https://openalex.org/W4411249469 |
| fwci | 4.81974515 |
| type | article |
| title | A Unified Deep-Domain Adaptation Framework: Advancing Feature Separability and Local Alignment |
| awards[0].id | https://openalex.org/G5169723505 |
| awards[0].funder_id | https://openalex.org/F4320334771 |
| awards[0].display_name | |
| awards[0].funder_award_id | CRG/2023/001239 |
| awards[0].funder_display_name | Science and Engineering Research Board |
| biblio.issue | 12 |
| biblio.volume | 25 |
| biblio.last_page | 3671 |
| biblio.first_page | 3671 |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9203000068664551 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| funders[0].id | https://openalex.org/F4320334771 |
| funders[0].ror | https://ror.org/03ffdsr55 |
| funders[0].display_name | Science and Engineering Research Board |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C2776401178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6779509782791138 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[0].display_name | Feature (linguistics) |
| concepts[1].id | https://openalex.org/C139807058 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6343462467193604 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[1].display_name | Adaptation (eye) |
| concepts[2].id | https://openalex.org/C36503486 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6056505441665649 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[2].display_name | Domain (mathematical analysis) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5661084651947021 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2776434776 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5601222515106201 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q19246213 |
| concepts[4].display_name | Domain adaptation |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4781571328639984 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3270820081233978 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.13035622239112854 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.09933990240097046 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C169760540 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0789719820022583 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[9].display_name | Neuroscience |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C95623464 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[12].display_name | Classifier (UML) |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/feature |
| keywords[0].score | 0.6779509782791138 |
| keywords[0].display_name | Feature (linguistics) |
| keywords[1].id | https://openalex.org/keywords/adaptation |
| keywords[1].score | 0.6343462467193604 |
| keywords[1].display_name | Adaptation (eye) |
| keywords[2].id | https://openalex.org/keywords/domain |
| keywords[2].score | 0.6056505441665649 |
| keywords[2].display_name | Domain (mathematical analysis) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5661084651947021 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/domain-adaptation |
| keywords[4].score | 0.5601222515106201 |
| keywords[4].display_name | Domain adaptation |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4781571328639984 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3270820081233978 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.13035622239112854 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.09933990240097046 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/neuroscience |
| keywords[9].score | 0.0789719820022583 |
| keywords[9].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.3390/s25123671 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/12/3671/pdf?version=1749695199 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25123671 |
| locations[1].id | pmid:40573558 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40573558 |
| locations[2].id | pmh:oai:doaj.org/article:b689aa3024c6485eb2c72523a7282875 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 12, p 3671 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/b689aa3024c6485eb2c72523a7282875 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12196648 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12196648 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5103944180 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pranav Kumar |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I132153292 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Technology Patna, Bihar 801106, India |
| authorships[0].institutions[0].id | https://openalex.org/I132153292 |
| authorships[0].institutions[0].ror | https://ror.org/01ft5vz71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I132153292 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Patna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pranav Kumar |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Technology Patna, Bihar 801106, India |
| authorships[1].author.id | https://openalex.org/A5081683515 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8247-9040 |
| authorships[1].author.display_name | Jimson Mathew |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I132153292 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Technology Patna, Bihar 801106, India |
| authorships[1].institutions[0].id | https://openalex.org/I132153292 |
| authorships[1].institutions[0].ror | https://ror.org/01ft5vz71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I132153292 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Patna |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jimson Mathew |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Technology Patna, Bihar 801106, India |
| authorships[2].author.id | https://openalex.org/A5068482436 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9524-9284 |
| authorships[2].author.display_name | Rakesh Kumar Sanodiya |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I207223250 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India |
| authorships[2].institutions[0].id | https://openalex.org/I207223250 |
| authorships[2].institutions[0].ror | https://ror.org/00gmd7q80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I207223250 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Information Technology Design and Manufacturing Jabalpur |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rakesh Kumar Sanodiya |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India |
| authorships[3].author.id | https://openalex.org/A5045607242 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8375-5374 |
| authorships[3].author.display_name | Avinash Chouhan |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210130634 |
| authorships[3].affiliations[0].raw_affiliation_string | North Eastern Space Applications Centre Umiam, Meghalaya 793103, India |
| authorships[3].institutions[0].id | https://openalex.org/I4210130634 |
| authorships[3].institutions[0].ror | https://ror.org/03tdar888 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210130634 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | North Eastern Space Applications Centre |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Avinash Kumar Chouhan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | North Eastern Space Applications Centre Umiam, Meghalaya 793103, India |
| authorships[4].author.id | https://openalex.org/A5118192970 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Rahul Reddy Bukkasamudram |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Information Technology, Sri City, Chittoor, Sri City 517646, India |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rahul Reddy Bukkasamudram |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Information Technology, Sri City, Chittoor, Sri City 517646, India |
| authorships[5].author.id | https://openalex.org/A5118134766 |
| authorships[5].author.orcid | https://orcid.org/0009-0008-5120-5707 |
| authorships[5].author.display_name | Chandra Sai Teja Adhikarla |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Indian Institute of Information Technology, Sri City, Chittoor, Sri City 517646, India |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chandra Sai Teja Adhikarla |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science and Engineering, Indian Institute of Information Technology, Sri City, Chittoor, Sri City 517646, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/12/3671/pdf?version=1749695199 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Unified Deep-Domain Adaptation Framework: Advancing Feature Separability and Local Alignment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2997567050, https://openalex.org/W4394775207, https://openalex.org/W4389474468, https://openalex.org/W4300172004, https://openalex.org/W3203792196, https://openalex.org/W4321649381, https://openalex.org/W2997645659, https://openalex.org/W3180787869, https://openalex.org/W4295929828, https://openalex.org/W3156096827 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25123671 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/12/3671/pdf?version=1749695199 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25123671 |
| primary_location.id | doi:10.3390/s25123671 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/12/3671/pdf?version=1749695199 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25123671 |
| publication_date | 2025-06-12 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3094111018, https://openalex.org/W6804017529, https://openalex.org/W2795889831, https://openalex.org/W4316660917, https://openalex.org/W4312954132, https://openalex.org/W2786808285, https://openalex.org/W2610614780, https://openalex.org/W2042873848, https://openalex.org/W2165698076, https://openalex.org/W2395579298, https://openalex.org/W3096015486, https://openalex.org/W2896842408, https://openalex.org/W2467286621, https://openalex.org/W3118289105, https://openalex.org/W6859368767, https://openalex.org/W1565327149, https://openalex.org/W3180849682, https://openalex.org/W4298111403, https://openalex.org/W3033022871, https://openalex.org/W6637618735, https://openalex.org/W2593768305, https://openalex.org/W3085615344, https://openalex.org/W6725448924, https://openalex.org/W4406974888, https://openalex.org/W2963988212, https://openalex.org/W3021632667, https://openalex.org/W2145494108, https://openalex.org/W4391754941, https://openalex.org/W3115903950, https://openalex.org/W4404511670, https://openalex.org/W2072220266, https://openalex.org/W6748312029, https://openalex.org/W6750109254, https://openalex.org/W4383750504, https://openalex.org/W2767657961, https://openalex.org/W3034251282, https://openalex.org/W2889153461, https://openalex.org/W3047034287, https://openalex.org/W2996425034, https://openalex.org/W3200347881, https://openalex.org/W4383337612, https://openalex.org/W2998083796, https://openalex.org/W4392242262, https://openalex.org/W4225964733, https://openalex.org/W2478454054, https://openalex.org/W4289922498, https://openalex.org/W3035160371, https://openalex.org/W3095103918, https://openalex.org/W4313591409, https://openalex.org/W4385834328, https://openalex.org/W2096733369, https://openalex.org/W6739901393, https://openalex.org/W2104094955, https://openalex.org/W3215641581, https://openalex.org/W4285687723, https://openalex.org/W1731081199, https://openalex.org/W4389104894 |
| referenced_works_count | 57 |
| abstract_inverted_index.A | 155 |
| abstract_inverted_index.a | 18, 56, 80, 114 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 71 |
| abstract_inverted_index.an | 98 |
| abstract_inverted_index.be | 69 |
| abstract_inverted_index.is | 5, 17, 34, 45, 55, 130 |
| abstract_inverted_index.of | 7, 25, 65, 75, 119 |
| abstract_inverted_index.on | 158 |
| abstract_inverted_index.to | 60, 105 |
| abstract_inverted_index.we | 78 |
| abstract_inverted_index.For | 12 |
| abstract_inverted_index.and | 36, 52, 92, 127, 148, 161, 180 |
| abstract_inverted_index.but | 58 |
| abstract_inverted_index.due | 59 |
| abstract_inverted_index.for | 187 |
| abstract_inverted_index.its | 107 |
| abstract_inverted_index.key | 9 |
| abstract_inverted_index.may | 68 |
| abstract_inverted_index.one | 6 |
| abstract_inverted_index.the | 8, 22, 26, 31, 37, 42, 50, 62, 66, 102, 152, 159, 185 |
| abstract_inverted_index.way | 186 |
| abstract_inverted_index.LMMD | 141 |
| abstract_inverted_index.Mean | 124 |
| abstract_inverted_index.data | 23, 33, 44, 67, 144 |
| abstract_inverted_index.from | 29, 40, 112 |
| abstract_inverted_index.into | 101 |
| abstract_inverted_index.loss | 116, 133 |
| abstract_inverted_index.show | 174 |
| abstract_inverted_index.test | 43 |
| abstract_inverted_index.that | 96, 166, 175 |
| abstract_inverted_index.this | 73 |
| abstract_inverted_index.vary | 47 |
| abstract_inverted_index.when | 21 |
| abstract_inverted_index.“A | 84 |
| abstract_inverted_index.Apart | 111 |
| abstract_inverted_index.Local | 93, 122 |
| abstract_inverted_index.These | 172 |
| abstract_inverted_index.issue | 74 |
| abstract_inverted_index.known | 19 |
| abstract_inverted_index.local | 143 |
| abstract_inverted_index.loss, | 121 |
| abstract_inverted_index.model | 104, 178 |
| abstract_inverted_index.novel | 81 |
| abstract_inverted_index.shift | 16 |
| abstract_inverted_index.shows | 165 |
| abstract_inverted_index.used. | 131 |
| abstract_inverted_index.which | 30, 41 |
| abstract_inverted_index.DDASLA | 167, 176 |
| abstract_inverted_index.Office | 160 |
| abstract_inverted_index.across | 146, 182 |
| abstract_inverted_index.areas. | 11 |
| abstract_inverted_index.called | 83 |
| abstract_inverted_index.domain | 3, 13, 15, 76, 189 |
| abstract_inverted_index.future | 188 |
| abstract_inverted_index.paving | 184 |
| abstract_inverted_index.remote | 162 |
| abstract_inverted_index.shift, | 77 |
| abstract_inverted_index.source | 27, 51 |
| abstract_inverted_index.target | 38, 53 |
| abstract_inverted_index.(LMMD), | 126 |
| abstract_inverted_index.Angular | 132 |
| abstract_inverted_index.Feature | 90 |
| abstract_inverted_index.Maximum | 123 |
| abstract_inverted_index.Unified | 85 |
| abstract_inverted_index.address | 72 |
| abstract_inverted_index.angular | 120, 138 |
| abstract_inverted_index.domain, | 28, 39 |
| abstract_inverted_index.domains | 54 |
| abstract_inverted_index.entropy | 128, 149 |
| abstract_inverted_index.feature | 108, 135 |
| abstract_inverted_index.improve | 106 |
| abstract_inverted_index.method, | 82 |
| abstract_inverted_index.problem | 20 |
| abstract_inverted_index.refines | 151 |
| abstract_inverted_index.sensing | 163 |
| abstract_inverted_index.several | 169 |
| abstract_inverted_index.through | 137 |
| abstract_inverted_index.whereas | 140 |
| abstract_inverted_index.(DDASLA) | 95 |
| abstract_inverted_index.Aligning | 49 |
| abstract_inverted_index.ResNet18 | 103 |
| abstract_inverted_index.altered. | 70 |
| abstract_inverted_index.combined | 115 |
| abstract_inverted_index.datasets | 164 |
| abstract_inverted_index.decision | 153 |
| abstract_inverted_index.domains, | 147, 183 |
| abstract_inverted_index.enhances | 134 |
| abstract_inverted_index.fetched, | 35, 46 |
| abstract_inverted_index.findings | 173 |
| abstract_inverted_index.function | 117 |
| abstract_inverted_index.improves | 177 |
| abstract_inverted_index.methods. | 171 |
| abstract_inverted_index.research | 10 |
| abstract_inverted_index.training | 32 |
| abstract_inverted_index.transfer | 1 |
| abstract_inverted_index.Advancing | 89 |
| abstract_inverted_index.attention | 99 |
| abstract_inverted_index.equalizes | 142 |
| abstract_inverted_index.intrinsic | 63 |
| abstract_inverted_index.introduce | 79 |
| abstract_inverted_index.learning, | 2 |
| abstract_inverted_index.mechanism | 100 |
| abstract_inverted_index.research. | 191 |
| abstract_inverted_index.solution, | 57 |
| abstract_inverted_index.Adaptation | 87 |
| abstract_inverted_index.Framework: | 88 |
| abstract_inverted_index.adaptation | 4, 190 |
| abstract_inverted_index.alignment, | 61, 139 |
| abstract_inverted_index.consisting | 118 |
| abstract_inverted_index.experiment | 157 |
| abstract_inverted_index.extraction | 109 |
| abstract_inverted_index.properties | 64 |
| abstract_inverted_index.robustness | 181 |
| abstract_inverted_index.Deep-Domain | 86 |
| abstract_inverted_index.Discrepancy | 125 |
| abstract_inverted_index.adaptation, | 14 |
| abstract_inverted_index.boundaries. | 154 |
| abstract_inverted_index.capability. | 110 |
| abstract_inverted_index.outperforms | 168 |
| abstract_inverted_index.Alignment” | 94 |
| abstract_inverted_index.Separability | 91 |
| abstract_inverted_index.distribution | 24 |
| abstract_inverted_index.incorporates | 97 |
| abstract_inverted_index.minimization | 129, 150 |
| abstract_inverted_index.comprehensive | 156 |
| abstract_inverted_index.distributions | 145 |
| abstract_inverted_index.discrimination | 136 |
| abstract_inverted_index.generalization | 179 |
| abstract_inverted_index.significantly. | 48 |
| abstract_inverted_index.self-attention, | 113 |
| abstract_inverted_index.state-of-the-art | 170 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5068482436, https://openalex.org/A5103944180 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I132153292, https://openalex.org/I207223250 |
| citation_normalized_percentile.value | 0.94515955 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |